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ABSTRACT 

Akhavan Rahnama, Amir Hossein 
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Sentiment analysis on Twitter public stream has been a topic of research recently. 
Several non-commercial libraries and software were developed to perform sentiment 
analysis, however none of them performed the analytics in real-time for Twitter data. 
Performing the same task in real-time can gives us insight of Twitter users public 
opinions regarding recent happenings of the time that analysis was made. In this thesis 
work, we propose a full-stack architecture with a software prototype that performs real-
time sentiment analysis on Twitter public stream. We address the problem using large-
scale online learning and specifically online parallel decision trees. Large-scale learning 
is utilized due to the fact that social media website such as Twitter produce data with 
high volume (around 5800 tweets per second in 2014) and in addition, there is a high 
time constraint (up to seconds) in real-time analytics in both learning, processing and 
query response time. Moreover, Twitter stream data arrives instance-by-instance and 
therefore we have utilized online learning with incremental and per-instance learning 
flexibility.  SAMOA is a framework that provides support for a set of scalable online 
learning algorithms such as Vertical Hoeffding Tree. We use SAMOA’s VHT learner 
with Apache Storm as our Stream Processing Engine. However, utilizing only VHT and 
Apache Storm cannot solve the problem at hand. Therefore, we also developed an open-
source Java library called Sentinel that enables real-time Twitter stream reading, in-
memory pre-processing computations and data structures, feature selection, frequent 
miner algorithms and etc. that completes our architecture. In Chapter 3, we show the 
architecture of our solution and its applicability and usefulness is shown in chapter 4. 
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1 INTRODUCTION 

1.1 Background research 

The trend of advanced data mining, as we know of today, started since 1990s in leading 
IT industry firms (Mena: 2011). According to Mena (2011), retail and finance compa-
nies were collecting data by applying relatively basic data analysis since 1980. Using 
the knowledge that came from data brought them opportunities, which resulted into 
their market dominance and customer satisfaction. This trend has accelerated even more. 
One straightforward explanation of this trend is the availability of vast amounts of data 
in companies’ data warehouses.  A lot of companies have explored data for competitive 
advantage, however due to the huge volume of existing data, processing approaches has 
been moved away from manual analysis toward computerized analysis. In addition, data 
volume in increasing and sources are no longer limited to human beings and devices are 
now a big player in the data generation ecosystem.  On the other hand, Internet has be-
come increasingly popular that the current data mining systems now include distributed 
and time-dependent information. Adding the distributed dimension to data mining sys-
tems shall introduce additional complexity to the data mining’s processes. 

 

Laney (2001) defined challenges and opportunities brought by increased data with a 
3Vs model: the increase of Volume, Velocity, and Variety, which was later used as the 
basis of definition of big data. Beyer (2012) defined big data as  

High-volume, high-velocity and high-variety information assets that demand cost-
effective, innovative forms of information processing for enhanced insight and 
decision-making.  

Big data analytics has turned into an important utility for improving both efficiency and 
quality of different players such as companies, organizations and governments. 

 

According to Murdopo (2013), in terms of volume, big data systems need to handle 
large amounts of data, which is generated at an increasing rate. Gens (2011) stated that 
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8 billion terabytes of data would be generated by 2015. In terms of variety, sensors and 
devices along with web applications are generating various types of data. In terms of 
velocity, big data systems need to process data with high speed of generation that flow 
into their systems. 

 

1.2 Problem Identification and Motivation 

Real-time analytics, a subset of big data applications, is when the newly arriving data 
needs to be included into the decision-making process within seconds. Meaning that, 
they need to deal with high volume of recent amounts of data to aid timely or instantia-
tions decision-making (Mohammad and Al-Jaroodi, 2014). In intelligent transportation 
where the sensors are used to control traffics in cities or roads, decision-making needs 
to include the sensor data within seconds whereas in financial market surveillance, the 
system needs to be able to make decisions within milliseconds to detect opportunities in 
the market trend. See Mohammad and Al-Jaroodi (2014) for more examples. After 
Twitter announced its stream APIs in 2010, performing real-time analytics on Twitter 
also became possible.  

 
 
 
According to Pang and Lee (2008), Sentiment analysis is “computational treatment of, 
sentiment, opinions or subjectivity in a source text”. Sentiment analysis is generally 
defined as a classification machine learning task and we follow the classification 
scheme of the problem throughout this thesis work. 

 
Sentiment analysis on Twitter public stream1 has been of interest in research community. 
One reason can be the fact that users are always encouraged to write a post about their 
current happenings in life and as a result there is potential for users to review on ideas, 
products. Twitter is one of the important sources of dynamic and massive data among 
social media websites. In October 2012, Obama and Romney’s presidential election 
debate created almost 10 million tweets in less than two hours. During the debate, Twit-
ter users were posting their sentiment about different topics that were interesting to 
them such as healthcare2. In September 2014, Twitter was receiving around 500 million 
tweets per day from users3. This means that around 5800 tweets are processed every 
second. The mentioned facts shows that there exists an opportunity to perform real-time 
analytics on Twitter data to detect trends or perform tasks, namely sentiment analysis in 
a timely manner for public security, disaster prediction like Swine Flu epidemics in 
2009, business disaster protection such as Toyota’s Crisis4, public polling, data driven 
journalism and marketing to name a few. According to De Francisci Morales (2013) and 

                                                
1 https://dev.twitter.com/streaming/public 
2 https://blog.twitter.com/2012/dispatch-from-the-denver-debate 
3 https://about.twitter.com/company 
4 http://en.wikipedia.org/wiki/2009–11_Toyota_vehicle_recalls 
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as we demonstrate in more details, none of the available non-commercial software can 
perform sentiment analysis in real-time on Twitter public stream in section 2.3.2. 
 
 

 

1.3 Research question 

As mentioned earlier, Twitter Stream data has high velocity and volume in real-time. 
Also, the instances arrive with non-uniform arrival rates that can vary over different 
time period. This means that a complete dataset is not ready before the learning starts 
and learning process should be incremental.  
 
Our main research questions are the followings:  
 

• In terms of feasibility of the task, is it possible to develop a software prototype 
according to a paradigm with a set of libraries to perform real-time sentiment 
analysis on Twitter Public Stream? It should be noted that we assume that a real-
time computing engine is assuring and supporting the real-time communication 
among nodes in a distributed environment. 

• In terms of learning in real-time, is it possible to use supervised learners to learn 
from real-time data with acceptable performance and accuracy in classifying 
sentiments?  

 

1.4 Proposed Solution 

 
It is apparent that real-time Twitter sentiment analysis can by tackled by large-scale 
online machine learning due to number of reasons: firstly, the stream data has time con-
straint while processed in real-time. By parallelization, processing and query time be-
comes shorter and more efficient. In addition, as mentioned earlier, the Twitter data is 
rather substantial in terms of size. In addition, learning models and algorithms with 
high-accuracy are complex and therefore expensive in terms of computation and in case 
it is distributed among several processing units, it can be computationally efficient. Also, 
the data arrives instance-by-instance and using online learning can provide incremental 
learning in our model. Online learning algorithms are faster compared to batch learners 
(Le Cun and Bottou, 2004). Specifically, online decision trees such as Hoeffding Tree 
has shown high performance and accurate results in classification task (Pfahringer et. al, 
2007). In addition, according to Ben-Haim and Tom-Tov (2010) and Amado, Gama and 
Silva (2002), parallel decision trees reduce the time a tree is generated and therefore 
they are equally accurate than their serial counter parts and therefore highly applicable 
in this context. Proposed by Murdupo et al. (2013), Vertical Hoeffding Tree (VHT) 
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keeps the accuracy measures of serial Hoeffding tree, improves its memory usage by 
parallelism. 
 
 
 
 
In this research, we present a functional software prototype that enables the usage of 
online parallel decision trees in distributed environments. We follow SAMOA5’s scala-
ble online learner, namely Vertical Hoeffding Tree. Apache Storm is our selected real-
time computing engine, due to the fact that it ensures real-time computation in the 
stream data model (Gray et al: 2014). However with all the aforementioned selections, 
SAMOA lacks components that process Twitter Public stream and adapters that connect 
data, learning and processing stream engine. Not only we develop adaptors to connect 
learner and the engine, but also we present Sentinel6 in this study. Sentinel is an open-
source Java library that makes our architecture complete by enabling pre-processing, 
feature selection, frequent miner, sliding window models, stream abstraction classes and 
etc. While Sentinel is part of our research, it is not the only purpose. Sentinel is com-
bined with SAMOA and Apache Storm to enable the real-time sentiment analysis. 
Therefore, Sentinel a mean to answer our research question.  

 

 

 

FIGURE 1. A bird-eye view of our solution 

It should be mentioned that our large-scale online parallel decision tree approach is only 
one of the possible solutions that addresses real-time Twitter sentiment analysis prob-
lem, however at the time of writing this thesis, there are no other, open source solutions 

                                                
5 Apache SAMOA (Scalable Advanced Massive Online Analysis) is a framework and program-

ming paradigm for scalable machine learning: http://samoa.incubator.apache.org/ 
6 Full source code and documentation available at: http://ambodi.github.io/sentinel 
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to the research question with similar capabilities to sentinel. Furthermore, Sentinel is 
currently being merged with the SAMOA code base. It may be possible to consider oth-
er possible solutions and approaches but discussion of sentinel compared to other ap-
proaches is left out of the scope of this thesis work and can be a topic of further re-
search. 
 
 

 

1.5 Objectives of the solution 

In this study, the followings are our solution’s objectives: 
 
• Real-time analytics: It guarantees to perform online analytics on stream data.  
• Accuracy and Performance in Learning: We present a hybrid approach that can im-

prove both accuracy and performance in Vertical Hoeffding Tree compared to its se-
rial version. In other words, since VHT uses memory more efficiently, we present 
an approach that can use that free memory to improve accuracy measures of VHT 
compared to its serial version. 

• Real-world dataset: The case study of this thesis work should be based on using 
Twitter Public Stream in real-time directly. 

1.6 Overview of this thesis 

This thesis work is organized as follows: In chapter 1, problem identification and 
motivation along with the proposed solution and its objectives were presented. In 
chapter 2, data stream mining along with large-scale learning and parallel decision trees 
are discussed. A section on related concludes this chapter. In chapter 3, each core 
component in our architecture with its corresponding algorithms is discussed. In chapter 
4, the usefulness of our approach is shown in a case study and further research is 
proposed. We have an appendix at the end of this document to provide some basic 
necessary definitions, only to present enough information to ease reading of this thesis 
work. 

1.7 Publications 

Some of the results from chapters 1-3 of this thesis work are documented in the follow-
ing publication: 
 

• Rahnama, Amir Hossein Akhavan, (2014, Nov). Distributed real-time sentiment 
analysis for big data social streams, 2014 International Conference on (pp. 789 - 
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794). IEEE. In Control, Decision and Information Technologies (CoDIT), DOI: 
10.1109/CoDIT.2014.6996998 
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2 EXTENDED BACKGROUND AND RELATED RESEARCH 

 

2.1 Data Stream Mining 

2.1.1 Data streams 

 
Han and Kamber (2006) stated that continuous in-and-out flow of stream with varying 
update rates makes data streams different than other type of data models. According to 
Bifet et al. (2010), main sources of stream data are sensors and devices, traffic man-
agement systems, computer networks, user click and activity logs in front-end web ap-
plications, manufacturing systems, emails, blogs, social media (Twitter, Facebook, Wik-
ipedia) to name a few. 
 

According to Bishop (2006, pp. 234), stream data is classified into two different catego-
ries: stationary and non-stationary. In the stationary case, the data evolves in time, but 
the distribution from which it is generated stays the same. In non-stationary case, which 
is generally more complex to mine, the distribution that generates data also evolves with 
time. 

 

2.1.2 Stream Data Model 

A formal representation of stream can be denoted as 

𝑎!,𝑢𝑣! ,… . , 𝑎!,𝑢𝑣! ,… 

where at each point in time, t, and stream has a fixed length, a positive integer denoted 
as n. However, it is assumed that the value of length of the stream is not fixed and limits 
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to infinity. Each instance of stream data is an element of an ordered list 7called a tuple. 
In the representation, each instance is a key/value pair where 𝑎!  (1 ≤ 𝑖 ≪ 𝑛) is the at-
tribute key that can hold a unique identifier and 𝑢𝑣!  (1 ≤ 𝑖 ≪ 𝑛) is the corresponding 
attribute value(s), also called an update values that can hold values of types string, bits 
or integers (Liu et. al: 2011).   

 

 

2.1.3 Stream Data Processing 

According to Rajaraman and Ullman: (2012, pp. 132), in a data-stream management 
system, data instances arrive at a system with different arrival rates. It should be noted 
that arrival rates between instances are not uniform. One significant difference between 
data stream management system with regular databases is that data stream management 
systems have no control over arrival instances and rates in contrast with a database that 
controls the reading process from a disk by SQL insert commands, bulk loaders or etc. 
In contrast, data stream management systems should be developed in such a way that 
they can deal with different arrival rates for incoming instances. In practice of data 
streams processing however, there are chances of data being lost during that pro-
cessing. Due to the assumption of potentially infinite number of available instances in a 
stream data, the processing on each instance should be fast enough so that instances are 
not lost due to latency in processing8. In the stream model, it is expected that processing 
on each instance be done in only few passes over the data. In this research, we follow 
the usage of one-pass algorithms. In one-pass algorithms, each arriving instance is ex-
amined once only and gets discarded by algorithm after that. One-pass algorithms keep 
the required space smaller compared to algorithms that use few passes over data.  

 

As it can be seen in Figure 2, summaries of a subset of streams are in a working store 
and streams are archived into archival store. Based on Rajaraman and Ullman: (2012, 
pp. 132) and Han and Kamber (2006, pp. 468), we follow the common assumption in 
stream mining literature that queries9 are answered based on the working store and the 
system only uses the archival store for answering queries in special conditions, such as 
when there is no interest in timely decision-making (Rajaraman and Ullman, 2012, pp. 
134). In most cases, working store is either on disk or in main memory. In case it exists 
in main memory, it will return queries much faster with a trade-off that it will be smaller 
in size and therefore more compact with less data. The archival storage is so massive 
that we just store the input streams. It cannot be assumed that system can answer que-
ries fast enough with that data, therefore the working set is the source of data for real-
time analytics and archival set is the source to perform CRUD10 operations in databases, 
batch processing and etc.  
 
                                                
7 Ordered by the timestamp which data was generated 
8 We also exclude cases where computing engine has large memory such as in massively scaled 

clouds or distributed environments such as in large companies such as Twitter. 
9 Queries in stream mining are discussed in section 2.1.6 in more details. 
10 Create, Read, Update and Delete are main functions while working with databases.   
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FIGURE 2. Anatomy of a data-stream management system (Rajaraman and Ullman, 
2012, pp. 132) 

 

2.1.4 Synopses  

Gibbons and Matias (1999) introduced a type of data structures called synopsis data 
structure, which is substantially smaller than the base data sets. Synopsis resides in main 
memory and is used to answer queries faster where timely responses are required. As 
mentioned earlier, answering queries with archival set is time-consuming. Synopsis is 
the in-memory working sets in stream data processing. Stream processing algorithms 
use this data structure to keep an optimum usage of memory. Synopses are of utmost 
important, since they can efficiently hold summaries of the stream data. The relation-
ship between queries and synopsis is explained in chapter 3. 

 

2.1.5 Sliding window 

Sliding window is one of widely used approaches in stream mining in order to obtain a 
sample of data stream. The sliding-window model works based on recent data and 
therefore it is optimized for real-time stream processing. In this model, the processing 
and analysis of the instances is only done on recent data within a fixed slice of time. In 
many applications areas, such as financial forecasting, predicting the next value in a 
time series is dependent on observations of the previous values. Generally in such cases, 
to predict future values, it is expected that recent observations are likely to be better 
predictors (i.e. more descriptive) than historical observations. Here, we discuss the fixed 
and adaptive sliding windows, although other approaches such as Landmark and 
Damped are exist. 
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2.1.5.1 Fixed Sliding Window 

 
According to Han and Kamber (2006, pp. 470) in fixed-size sliding window model with 
size N. With arrival of each instance, time step value is increased by one (zero is its 
starting value). Each data instance will expire after exactly N time steps. The data that is 
used for answering queries is the last N instances that have arrived.  

2.1.5.2 Adaptive Window 
 

Bifet and Gavalda (2007) showed that setting the length of the window is not an easy 
task. This is because stream data flow dynamically resulting in different rate of instance 
arrival at different points in time. To use fixed-size sliding-window more efficiency, 
three approaches can be followed: First is choosing a small size to increase accuracy of 
the model. Second is to choose a large size so instances will be accessible longer which 
results in stability of recall. Third is to use a decay function11 to assign a weight value to 
instances with regards to the time they were generated. In the third solution, the user 
still needs to set the decay value in a way that it matches the rate of change, which is not 
known in non-stationary data streams (Datar and Motwani, 2007).  

 

Bifet and Gavalda (2007) proposed ADWIN that dynamically sets the size of the win-
dow based on incoming data. As you can see in Figure 3, ADWIN needs a confidence 
value as input (𝛿) and initializes an empty list of buckets and keeps most recent instanc-
es along with simple statistics measures such as width, variance and total number of 
instances in the window. With coming of new instances, old instances are dropped from 
the window, however statistics of the entire stream is stored in memory.  ADWIN splits 
the window into two sub-windows in all possible ways to find that two sub-windows 
show noticeably large difference in mean values of their corresponding instances, based 
on a statistical measure called 𝜀!"#. When this happens, ADWIN drops the old window.  

 

The statistical measure used in ADWIN, 𝜀!"#  (Hoeffding bound) was proposed by 
Hoeffding (1963) and it can be calculated from the confidence value (𝛿) for sub-
windows 𝑊!  and 𝑊!. At each time, number of instances that belong to W, n, is the sum 
of number of instances in  𝑊! (𝑛!) and 𝑊! (𝑛!) or formally (n= n0 + n1): 
 

𝑚 =   
1

1 𝑛! +   
1 𝑛!

            (1) 

 

  𝛿 =   
𝛿
𝑛           (2) 

 

                                                
11 i.e. exponential decay decreases at a rate proportional to its current value. Exponential decay can be 
formulated as !"

!"
. It should be noted that N is the quantity and λ is a positive rate, which is called 

the exponential decay constant. 
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𝜀!"# =   
1
2𝑚 ∙ ln

4
𝛿           (3) 

 

ADWIN’s processing time for each instance is 𝑂(𝑙𝑜𝑔 𝑊 ) and uses 𝑂 !
!!"#

  𝑙𝑜𝑔𝑊  
memory words. See Bifet and Gavalda (2007) for more theorems and details. 

 

 

 

 

 

 

 

FIGURE 3. ADWIN algorithm (Bifet and Gavalda: 2007) 

 

2.1.6 Stream Queries  

Two types of queries can be made over stream data: ad-hoc and standing. Ad-hoc query 
is made one time and standing query is made continuously in a loop on the stream data.  
Iceberg queries and top-k queries are two common forms of queries in data streams. We 
follow the definitions of these queries from Liu et al (2011):  

 

Definition 1: (iceberg query) Suppose S is an input stream of length n. Also, 
consider a support threshold g ∈ (0, 1). Return the instances, which their fre-
quencies, i.e. number of appearances are not smaller than ⌊φn⌋12. 

 

Definition 2 (top-k query): Suppose S is the input stream, return an ordered list 
of k with most frequent instances. 

 

                                                
12 The notation ⌊ corresponds to floor operation  

Input: Confidence value (𝛿), Stream (S), Instance (I) 
Output: Observed Mean Value of window (𝜇!!) 
 
initialize W = empty list 
     while (S has I) 

insert I to head of W 
      repeat (delete I from the tail of W and  Update 
                    statistical measures) 
       until (!𝜇!!! − 𝜇!!!!   ≥    𝜀!"#) 
for every possible sub-window of W (𝑊 = 𝑊! ∙𝑊!) 
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2.1.7 Frequent Item Algorithms 

Liu et al. (2011) categorized frequent item algorithms into three unique categories, 
namely sampling-based, counting based and hashing based algorithms. In this research 
work, we only focus on counting-based algorithms, therefore for more details see Liu et 
al. (2011). 

 

Liu et al. (2011) stated that counting-based algorithms have counters that monitor in-
stances in data stream. In case the algorithm selects an instance, a counter has the re-
sponsibility of counting each of its exact occurrences. Since memory is limited, clearing 
methods are used to keep the memory clean of infrequent instances or features13. If not, 
such instances will occupy the limited memory space, which can potentially become a 
shortcoming of this type of algorithms. In case clearing methods are performed incon-
sistently, some potentially frequent instances that are currently infrequent can be deleted 
by mistake. This has a negative effect on the results. In these types of algorithms, the 
goal is to design algorithms that can handle and adapt to changes efficiently. 

 

Metwally et al. (2005) proposed Space-Saving (Figure 4) for finding most popular k 
instances, namely top-k instances that occur more than a predefined threshold (min). 
The space-saving algorithm (Figure 3) is a counter-based algorithm and it has a synop-
sis data structure (D) that keeps the summary of a subset of 𝑚  stream instances in a 
stream with length 𝑛, where 𝑚 is noticeably smaller than 𝑛. Since even in most optimal 
cases, some of the stream instances will be lost during stream processing, Space Saving 
estimates the frequency of instance, 𝐹(𝑖!) where 1 ≤ 𝑗 ≤ 𝑚 by its estimated value, 
namely 𝑐𝑜𝑢𝑛𝑡(𝑖!). The algorithm adds m distinct instances into D. After that with arri-
val of each instance, Space Saving increments the count value of that instance, if the 
instance is monitored. If not, it replaces it with the instance that has at least min as it 
count value. Since Space Saving overestimates the frequency of the element that is not 
monitored, it keeps an error rate (𝜀) value as the “maximum over-estimation error”. The 
error rate for each instance is used to answer top-k queries where an instance is consid-
ered frequent if its corresponding sum of values of 𝑐𝑜𝑢𝑛𝑡 and 𝜀  is greater than or equal 
to the product of threshold and length of the stream. The space required for Space Sav-
ing is O(m). See Metwally et al. (2005) for proofs regarding space usage and more de-
tails. 

 

 

 

 

                                                
13 In most cases, features in text mining correspond to words and token. This is explained in 

chapter 3 and 4 in our case in more details. 
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FIGURE 4. Space Saving algorithm (Metwally et. al: 2005) 

 

2.1.8 Stream Data Classification 

For stream data classification, we follow the definition by Dietterich (2002). Suppose a 
stream x and let (𝑒! ,𝑢𝑣!) !!!

!  be a set of n instances. The goal of stream data classifica-
tion is creating a classifier h that can accurately predict a new category label 𝑦 = ℎ 𝑥 . 

 

According to Mena-Torres and Aguilar-Ruiz (2014) classifying data streams can be 
performed with two approaches: single classifier-based and ensemble-based approach. 
In single classifier-based approach, the main goal is to build a model that is from small 
portions of the data stream and incrementally update the model using new instances that 

 
Input: Stream (S) with length n, minimum frequency threshold (𝑚𝑖𝑛), 
number of monitored elements (m) 
Output: Frequent items with threshold 𝑚𝑖𝑛 

 
initialize a dictionary synopsis D in form of  (i, count(i), 𝜀(𝑖)) where 
count(i) is the estimation of frequency of i and 𝜀(𝑖) is the error rate of 
instance i 

 
for each  instance (i) in S 
    if i is monitored then 
          𝑐𝑜𝑢𝑛𝑡(𝑖) = 𝑐𝑜𝑢𝑛𝑡(𝑖) + 1; 
    else if D has an empty counter 

add new counter (i, 1, 0) to D 
    else  
          replace 𝑖 with 𝑖! with min frequency in D 
          𝑐𝑜𝑢𝑛𝑡(𝑖) = 𝑐𝑜𝑢𝑛𝑡(𝑖)+   1 

 𝜀(𝑖) =   𝑚𝑖𝑛 
   𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙𝑒𝑛𝑔𝑡ℎ + 1; 
 
Output i in D where 𝑐𝑜𝑢𝑛𝑡(𝑖) +   𝜀(𝑖) ≥ 𝑚𝑖𝑛 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ 



24 
 
are arriving to the model. For ensemble-based approach, many base classifiers are built 
for different parts of the data stream, and then all base models are merged to form an 
ensemble of classifiers. 

 

2.2 Large-scale machine learning 

 

According to Bekkerman et al (2011), there are several reasons that machine-learning 
algorithms need to scale up:  

• Data is growing is size that puts barrier into single machine processing. Scaling 
up machine learning improves performance compared to single machine learn-
ing algorithms. 

•  Features in data are growing in number. This particularly happens in text min-
ing that it can reach to more than thousands of features. One way to handle this 
is exclude features that have less impact on the analysis. However, scalable algo-
rithms partition instances in several processing units. This not only improves 
performance but also allows us to keep all features available in data to gain a 
better representation of data. 

• In order to improve accuracy, learning algorithms are growing in complexity. 
Scaling up these algorithms give more freedom to work with complex algo-
rithms especially in online learning approaches with incremental learning curves. 

• Real-time analytics puts time constraint on the time the data was generated. The 
constraint can vary from milliseconds to seconds (Mohammad and Al-Jaroodi, 
2014) and latency in processing and learning can result in loss of valuable in-
formation. Scaling up those algorithms by parallelization can greatly benefit the 
analytics with faster processing and less data loss. 

 

To be able to use scalable algorithms we need to utilize parallel or distributed systems 
that are able to execute machine-learning task in concurrence. To achieve this, research 
has suggested two main approaches: data parallelism and task parallelism. In former, 
multiple partitions of data are fed into the algorithm and they are processed concurrently. 
In the latter, different parts of algorithm are divided into independent segmented that 
can run concurrently (Bekkerman et. al, 2011, pp. 7-8). 

 

In following sub-sections, we discuss possible distributed processing engines that have 
potential to be used for online scalable machine learning approaches, namely modified 
version of MapReduce and SAMOA. After that, we discuss parallel decision trees and 
different type of parallelism in decision trees. We also discuss vertical parallelism as a 
potentially reliable solution since we deal with texts that can include high number of 
features. After that, Vertical Hoeffding Tree is discussed, as it is our parallel learning 
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algorithm that we have selected to apply on Twitter public stream data.  We conclude 
this section on Adaptive Bagging ensemble classification approach that combines sev-
eral Vertical Hoeffding Tree classifiers to obtain a better accuracy with a trade-off in 
using more memory and performance. Since we follow a large-scale approach by paral-
lelization in a distributed environment, the proposed trade-off can be neglected in our 
approach.    

 

2.2.1 MapReduce & Hadoop  

Dean and Ghemawat (2004) proposed MapReduce model as a programming model for 
processing datasets that are both large in scale and distributed. MapReduce works with 
a parallel-distributed algorithm, which runs on many clusters. MapReduce has two main 
functions, map that filters and sorts data, and reduce that summarizes the result of 
mapped function. Apache Hadoop14, the most widely adapted and popular implementa-
tion of MapReduce, is a platform with high reliability and is widely utilized in big data 
systems15. However MapReduce programming paradigm follows the batch-processing 
model. It should be mentioned that MapReduce paradigm supports scalability, and of-
fers fault tolerance mechanisms, which makes it a sound platform in distributed envi-
ronments.  

 

MapReduce programming model is based on batch processing model that is not the 
model we focus in our study. Several attempts have been made to make Hadoop and its 
MapReduce model a candidate for stream processing and adding feature to make it ap-
plicable to online processing model. Aly et al (2012) suggested M3 prototype to over-
come issues of pre-storing data before Hadoop jobs in Hadoop Distributed File System 
(HDFS) that causes a delay time. The authors suggested an approach in M3 that bypass-
es HDFS and handles the processing of stream data in the memory. M3 also supports 
continuous MapReduce jobs that make M3 applicable for real-tine online stream pro-
cessing. M3 is just a closed-source laboratory based project and is not yet published and 
therefore inapplicable in a production environment. Condie et al (2013) proposed Ha-
doop Online that allows “online aggregation” during batch processes that results in the 
ability to monitor and control the execution of the jobs in real-time. Their prototype also 
supports continuous queries that make Hadoop Online a sound platform for stream min-
ing. According to Hadoop Online homepage16, Hadoop Online is an early work-in-
progress prototype and no support is provided for utilizing it in neither external projects 
nor production environments. 

 

2.2.2 Apache Storm  

Apache Storm is a distributed real-time computing platform that enables real-time pro-

                                                
14 http://hadoop.apache.org/ 
15 A long list of DDM projects that use Hadop can be found at: http://wiki.apache.org/hadoop/PoweredBy 
16 https://code.google.com/p/hop/ 
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cessing of data. Marz (2011) proposed Storm as a computing engine for distributed 
stream data mining systems. According to Apache Storm documentation, Apache 
Storm17 is a distributed real-time computation system that facilitates reliable processing 
of unlimited streams of data. Real-time analytics and online machine learning are just a 
few domain of Storm’s multiple use cases. Gray et al. (2014) has proven that Apache 
Storm ensures real-time computation by following acyclic graph of transformation for 
each processing task. The limitation of using Apache Storm for all real-time big analyt-
ics scenarios is that Storm only guarantees the real-time computing if stream data model 
is used.   

 

2.2.3 SAMOA 

De Francisci Morales (2013) proposed SAMOA as an abstraction layer and a scalable 
machine-learning Java library. SAMOA is released by Yahoo and provides flexibility 
and abstraction to interact with stream processing engines. We follow SAMOA’s con-
ventions in the upcoming sections while using Apache Storm since it adds flexibility 
and re-usability while working with stream processing engines such as Apache Storm. It 
also has parallel learning algorithms that can be used on top of our Stream Processing 
Engine. 

2.2.3.1 SAMOA conventions  
 

SAMOA defines some key concepts for real-time distributed stream mining applica-
tions (Figure 5). More comprehensive concepts are discussed in details in Murdopo et al 
(2013). 

 

In SAMOA, each distributed system has a topology. Topology is a construct, which 
contains a set of processing items and stream. A processor is in charge of executing 
parts of algorithm on a specific Stream Processing Engine (SPE). Processors contain the 
logic of the algorithms. Processing Items (PI) implement processors. Systems pass dif-
ferent content events via streams. It should be noted that processing items could be in-
ter-connected.  

 

A stream is an unlimited continuity of dynamically typed and serialized list of values18 
called tuples. Streams can be seen as connectors between PIs and other components that 
send different content events between PIs. A content event is a wrapper object around 
the data that is passed on from one PI to another.  

 

                                                
17 http://storm.incubator.apache.org/ 
18 Serializing the tuple ensures that the object is in a state that it can be used in different processors even if 

they are on different physical machines. Dynamically typed listed list do not put any limits on data 
type that can be stored and retrieved from the list and therefore add more flexibility while working 
with them.  
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There are two types of node in SAMOA’s paradigm: master and worker. Master node is 
where the topology is submitted and it takes the responsibility of distributing code for 
other nodes. A worker node is a Java Virtual Machine process that executes parts of the 
topology. 

 

A source PI is called a spout. A spout passes content events through stream and reads 
data from external sources. Each stream has at least one spout. A bolt is consumer of 
spout(s) and it can join, filter or aggregate different instances. It can also communicate 
with other data sources such as Database Management Systems (DBMS).  

 

Bolts need grouping mechanisms, which sets how will the stream routes the content 
events. In shuffle grouping, stream passes the content events in a round-robin manner to 
target PIs. In all grouping, after replicating the content events, stream is passed to all 
PIs. In Key grouping, the stream is passed according to its key, meaning that content 
events are passed to the same PI if they have equal key identifiers. 

 

 

FIGURE 5. Instantiation of a Stream and Examples of Groupings (Murdopo et al: 2013) 

 

Transformation of stream between spouts and bolts follows the pull model, i.e. the cor-
responding bolt needs to pull tuples in the content event from the source processing 
items. Therefore the incoming instances are lost in spouts, in cases that bolts are unable 
to process instances fast enough to capture all incoming instances from them.  
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2.2.4 Parallel Decision Tree Induction 

Decision trees are reliable and efficient methods for classification (Ben-Haim and Tom-
tov 2010; Amado, Gama and Silva, 2002). One of their key features is that they include 
readable rules for humans. One of the main drawbacks of decision trees while working 
with large data is that they need to sort numerical attributes which causes computational 
overhead. Parallel decision trees like serial decision trees perform sorting in advance, or 
distributed or they use approximation techniques. Parallel decision trees have shown to 
improve performance significantly in text mining scenarios  (Murdopo, 2013 and Ben-
Haim and Tom-tov, 2010).   
 
According to Ben-Haim and Tom-tov (2010), parallel decision trees have several ap-
proaches for parallelization: horizontal, vertical, task and hybrid. We briefly mention 
each type along with their advantages and disadvantages and for more details on each 
parallelism type, see from Murdopo et al (2013). 

 
 
In horizontal parallelism, each instance will be sent to one and only one processor. The 
advantage of horizontal parallelism lies in the fact that it is suited for very high arrival 
rates of data. This type of parallelism is also flexible in the fact that it allows the user to 
add more processing power by increasing the parallelism level. The drawback is exces-
sive usage of memory as it keeps several duplicated model instances19 in each processor.  

 
 

 
In vertical parallelism (Figure 6), each attribute of incoming instance will be sent to one 
and only one processor. Vertically parallelizing a decision tree introduces several draw-
backs. First shortcoming is that increasing level of parallelism cannot result in any per-
formance gain in most cases, because splitting and distributing nodes requires a lot of 
computing power. Another drawback is that it is not optimized for cases where numbers 
of attributes are not high enough. The main application area of vertical parallelism is in 
text mining where number of attributes within each instance is high up to thousands. 
Vertical parallelism is suitable when working with data types such as texts with high 
number of attributes. Another advantage of vertical parallelism is less usage of memory 
due to the fact that the there is only one instance of the model for all processors. 
 
 
In task parallelism, decision tree nodes will be distributed to processors. Task parallel-
ism is only useful in case the model is complex up to a level that it has a bigger size 
than available memory. The disadvantage of task parallelism is that it needs a longer 
period of time to efficiently use the parallel processing power. 

 
 

 

                                                
19 In this context, the model is the decision tree model 
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Hybrid parallelism is a combination of vertical and horizontal parallelism. It uses each 
of parallelism types to overcome their shortcomings to achieve better efficiency in 
terms of performance.  

 
 

 

FIGURE 6. Vertical Parallelism (Murdopo et al: 2013) 

 
 

2.2.5 Vertical Hoeffding Tree 

Murdopo et al. (2013) proposed Vertical Hoeffding Tree (VHT), a parallel decision tree 
algorithm based on VFDT learner. Domingos and Hulten (2000) proposed VFDT for 
mining high-speed data streams. Cohen et al. (2008) and Last (2002) presented impres-
sive results with performance and accuracy of VFDT in online classification of data 
streams scenarios. 

 
 
 

 

FIGURE 7. Vertical Hoeffding Tree components and streams (Murdopo et al: 2013) 
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As you can see in Figure 7, VHT has four key processors: source, model-aggregator, 
local statistic and evaluator along with four messaging streams: computation-result, 
control, attribute and result.  Source fetches the data from a stream data source, instance 
by instance. It then sends the instance to model aggregator, which then splits the in-
stances based on their attribute. After that, the attribute is sent through attribute stream 
to local-statistic processor. As with Hoeffding Tree algorithm, the nodes in the model-
aggregator of VHT are created dynamically with every 𝑛!"# of new arriving instances 
and in case they belong to different classes. Model-aggregator node continuously sends 
instance information to local-statistic PIs and once it is time to split, it uses the com-
pute-event stream to send the information about the leaf that needs splitting to local-
statistic nodes. This information includes list of attribute with their update values, the 
class that the instance belong to along with the estimated accuracy of the classification, 
i.e. instance weight (Figure 8). 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 8. Model-aggregator – Phase 1 (Murdopo et al., 2013) 

 
 

Local-statistic PI keeps a dictionary of leaf IDs and their corresponding attributes (dict) 
and updates the values upon receiving the attribute tuple. When the compute tuple is 

Input:  
Vertical Hoeffding Tree (VHT) in its current state  
Instance (Inst) =!{(𝑎! , 𝑢𝑣! , )}!!!!"!#$ , 𝑐𝑙𝑎𝑠𝑠!"#$)! where total is number of at-
tributes  
Output: compute tuple 
 
initialize list of splitting nodes (𝑙𝑖𝑠𝑡!"#$%) 
sort Inst into a leaf (𝑙) by VHT 
set 𝑙!" to a unique identifier 
𝑙!"# = 0 (number of instances seen at leaf 𝑙) 
 
 
send attribute =  (𝑙!" , {(𝑎!, 𝑢𝑣! , )}!!!!"!#$, 𝑐𝑙𝑎𝑠𝑠!"#$ ,  𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_𝑤𝑒𝑖𝑔ℎ𝑡) to lo-
cal-statistic node 
 𝑙!"# =  𝑙!"# + 1; 
 grow = (𝑙!"# mod 𝑛!"# === 0); 
 

𝐢𝐟  (grow = 𝑡𝑟𝑢𝑒)𝐚𝐧𝐝 !!𝑐𝑙𝑎𝑠𝑠!"#$!!!!!
  !!"#

! ≥ 1 

   add 𝑙   to 𝑙𝑖𝑠𝑡!"#$% 
   send 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = (𝑙, 𝑙!")  to local-statistic with compute stream  
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sent, 𝐺𝒍 is computed for all attributes in 𝑙!" that are in dict. First two highest attributes 
with highest 𝐺𝒍 are sent to model-aggregator node (see Figure 9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 9. Local statistic PI, (Murdopo et al., 2013) 
 
 
 
Model-aggregator (Figure 10) sets the new highest and second highest attribute in the 
splitting node. When the local-result tuple is received, after computing the Hoeffding 
bound and checking if the difference of those attributes are greater than the bound, it 
will perform an split on the node with the highest 𝐺 (information gain) value20.   
 
 
There are two important remarks that should be mentioned: first is that an upper bound 
for tie breaking (𝜏) is set as input. According to Domingos and Hulten (2000), Hoeffd-
ing Tree can exhaust performance by splitting on nodes with very similar values of the 
first and second highest values of 𝐺. To prevent this, an upper bound is set for tie break-
ing and therefore the algorithm performs the splitting function more efficiently. Second 
is that model-aggregator has a built-in time-out mechanism that in case local-result tu-
ples from all the local-statistic nodes are not received, it will perform the splitting by 
statistics from local-statistic nodes that it has received. 
 
 
   
 
 

                                                
20 see Appendix for details on information gain 

Input: attribute or compute tuple 
Output: local-result tuple 
 
initialize hash table of < 𝑙!" , {(𝑎! , 𝑢𝑣!, )}!!!!"!#$ > 
while (attribute event is received) do 

update 𝑑𝑖𝑐𝑡 =  < 𝑙!" , {(𝑎! , 𝑢𝑣! , )}!!!!"!#$ > with attribute and 
class value and instance weight. 

 
while (compute event is received) do 

for each 𝑎!   (1 ≤ 𝑖 ≤ 𝑡𝑜𝑡𝑎𝑙) in 𝑙!" where total is the num-
ber of attributes, compute �̅�𝒍(𝑎!) if and only if 𝑙!" ∈ 𝑑𝑖𝑐 
 
find highest and second highest values of �̅�𝒍(𝑎!)   
In 𝑎!   (1 ≤ 𝑖 ≤ 𝑡𝑜𝑡𝑎𝑙)  
 
send 𝑙𝑜𝑐𝑎𝑙 − 𝑟𝑒𝑠𝑢𝑙𝑡 = (𝑎!"#!

!"#$! , 𝑎!"#!
!"#$!   )  to model-

aggregator via computation-result stream 
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FIGURE 10. Model-aggregator – Phase II (Murdopo et al., 2013) 

 
 
 
While the model is executed in testing, VHT predicts the value of classes in incoming 
instances via model-aggregator node. Model-aggregator sorts input instances into the 
leaf and predict their class value. The result will be sent in result stream and sends it to 
evaluator processor. 
 

2.2.6 Adaptive Bagging of VHT 

According to Bifet et al. (2009), adaptive bagging methods are ensembles methods that 
combine several models prediction value to provide a final value that is more accurate 
and they introduce mechanisms that can handle concept drifts.  
 
 
Bifet et al. (2009) proposed the usage of ADWIN bagging using Hoeffding trees. In our 
study, we use bagging ensemble methods with Vertical Hoeffding Tree. In this ap-
proach, each node in VHT has its own ADWIN. During the execution of algorithm, 
error rates in classification at each node are stored. Any sudden increase in classification 

Input: local-result 
Upper bound on tie breaking (𝜏) 
�̅�, Information gain function 
Vertical Hoeffding Tree (VHT) in its current state 
 
for 𝑙 in 𝑙𝑖𝑠𝑡!"#$% do 

𝑎!"#! = 𝑎!"#!
!"#$!  

𝑎!"#! = 𝑎!"#!
!"#$!  

 
while (local-result is received or time-out) 

compute 𝜀  (Hoeffding bound) 
𝑎∅ = �̅�(𝑙), // �̅� of no-split scenario 
if 𝑎!"#!   ≠ 𝑎∅ and �̅�(𝑎!"#!) − �̅�(𝑎!"#!) < 𝜀  𝐚𝐧𝐝  𝜀 < 𝜏   

replace 𝑙 and 𝑙!"# = the split node on (𝑎!"#!) 
for each branch in 𝑙!"# do 

insert leaf 𝑙!"#!  
set 𝑙!"#! (stats)  = 𝑙!"#  (stats) 

end  
end if 

end while 
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errors indicates change in data. At this stage, a new tree is cloned without splitting any 
attribute that has its own ADWIN. After ensuring that the new tree shows decrease error 
values, the new tree is replaced by the old one. Bifet et al (2009) showed that ADWIN 
bagging using Hoeffding Trees could increase accuracy with a trade-off in runtime 
memory usage.  
 
Although adaptive bagging is an exhaustive process for learning algorithm, the im-
proved accuracy is of great value in our scalable online learning approach, because 
online learning algorithms have less accuracy over their batch counter-parts (Le Cun 
and Bottou, 2004). Since we follow a parallel learning approach, the working memory 
is less exhausted. This means that additional memory and computation power can be 
added with more freedom to the system to improve accuracy as well as it performance 
in our parallel online learning process. 
 

2.3 Related research 

Numerous studies have been conducted on sentiment analysis on Twitter, however we 
only mention the ones with a direct influence on this thesis work. In the first section, we 
discuss sentiment analysis research on Twitter and in the second section, we mention 
the available non-commercial software and libraries for Twitter sentiment analysis to 
show the need for our research in real-time analytics on Twitter stream data that with 
support for large datasets. 
 

2.3.1 Twitter Sentiment Analysis 

 
Go et al. (2009) presented a batch learning maximum entropy approach on sentiment 
analyzing the Twitter data. The authors have used Twitter Search API instead of Twitter 
Stream API21. They created a sample dataset that has both a training set and a test set 
with Twitter search API. It includes 1 million and six hundred tweet instances that is 
balanced, meaning half of tweets have positive and the other half have negative senti-
ment. The study considers the Twitter data in context of n-gram language models, spe-
cifically unigram and bigram models and the accuracy of keyword-based, Naïve Bayes-
ian, Maximum Entropy and SVM are compared. The authors proposed their solution as 
a useful tool for buyers who want to search for the opinions of other customers regard-
ing the same products. Their solution is also useful for companies that want to monitor 
specific products or brands.  In the study, Naïve Bayes, Maximum Entropy and SVM 
were showing significantly accurate measures up to 80%.  
 
 

Bifet and Frank (2010) conducted a research on comparing Multinomial Naive Bayes, 
SGD and Hoeffding tree in terms of time, accuracy and Kappa22 measures to perform 
                                                
21 https://dev.twitter.com/docs/api/1/get/search 
22 see appendix for more details on Kappa 



34 
 
sentiment analysis on a the sample that was provided in Go et al. (2009). Authors rec-
ommended the SGD-based models along with the usage of sliding window models for 
Go et al (2009)’s dataset. This study also showed high potentials in using Hoeffding 
Tree for sentiment analysis with acceptable performance and accuracy rates. 
 
 
 

2.3.2 Stream Mining Software for Stream mining 

 
There have been mainly two non-commercial software and libraries proposed for the 
Sentiment analysis for Twitter stream, namely MOA and RapidMinder. We discuss both 
of these solutions along with their shortcomings for our research in real-time Twitter 
stream sentiment analysis. 
 
 
Bockermann and Blom (2012) proposed a Twitter plugin for RapidMiner23, which uses 
Twitter Stream Data. The modeling of the stream follows the single-pass paradigm. The 
authors proposed a data and control flow (see Figure 11-12) with a prediction layer on 
top of a batch Naïve Bayes Learner. Prediction Service component add a prediction val-
ue to each instance. Moreover, Prediction Error has the responsibility of computing the 
error of prediction and labeling process. The RapidMiner plugin processes stream in-
stances in different file formats such as CSV files and after that, user can perform learn-
ing on the stored Tweet instances. One of the shortcomings of RapidMiner plugin is the 
fact that it only offers classification with the serial Naïve Bayes learner. The other one 
is the fact that there is a limit for data files that it can process (see documentation for 
more details)24. 

 
 

 

 

FIGURE 11. Control and data flow for data processing in RadpidMiner Twitter plugin 
(Bockermann and Blom: 2012) 

 
 
 

                                                
23 The plugin works on top of Rapidminer package, more details at http://rapidminer.com/ 
24 https://rapidminer.com/documentation/cloud/twitter/ 
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FIGURE 12. Architecture of the Streams Plugin in Twitter Plugin for RapidMiner 
(Bockermann and Blom, 2012) 

 
 
Bifet et al. (2011) proposed a plugin for mining tweets called MOA-TweetReader with 
a set of serial online learning algorithms. The authors showed the usage of MOA-
TweetReader with Go et al (2009)’s dataset in Bifet et al. (2011). The solution25 in-
cludes an adaptive filter and a change detector that has the responsibility of detecting 
sudden and gradual changes. MOA-TweetReader runs a batch processor and stores the 
instances in an ARFF file at first. After that, user executes the learning process that in-
cludes a set of online learners that run machine-learning tasks over the stored dataset. It 
should be mentioned that the software package has been non-functional since 2013, due 
to several reasons such its incompatibility with Twitter APIs26 and several considerable 
software bugs in its components. Above that, none of the algorithms or processing com-
ponents supports any scalability (or other approaches) by parallelization of tasks or al-
gorithms. This makes MOA and its Twitter plugin, MOA-TweetReader applicable in 
working on small datasets only and inapplicable for large datasets.  
 
 
 
The most important shortcoming of both previously mentioned plugins is the fact that 
they read their data from a file. This means that the system has full control over the 
reading process and there are no chances that instances are lost. Therefore, performance 
is never a critical issue for such systems. As mentioned in section 2.1.3, this is in con-
trast with real-time stream mining cases, where loss of data is an important factor to 
discard algorithms for their low performance rate. This makes both solutions inapplica-
ble in Twitter’s real-time stream mining or more specifically sentiment analysis.  
 

                                                
25 Available at http://sourceforge.net/projects/moa-datastream/files/MOA-TweetReader/ 
26 https://groups.google.com/forum/#!topic/moa-users/RZ4EbG_8xco 
 



36 
 
  

 

 

FIGURE 13. MOA-TweetReader (Bifet et al, 2011) 
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3 ARCHITECTURE 

 

In this chapter, we propose a full-stack architecture of a software prototype that can 
perform real-time sentiment analytics on Twitter public stream (Figure 1). We divide 
the architecture into three components of a pyramid (Figure 14). First is Apache Storm, 
our stream processing engine that is responsible for communication among processors 
and nodes in a distributed environment. Second is SAMOA, our scalable machine-
learning library that comprises a set of learning algorithms that can be used as with an 
API. On top of that is Sentinel, our open-source Java library that offers stream readers, 
query monitoring, windowing models, frequent item algorithms, feature selection that is 
missing to make the actual data digestible with SAMOA learners and evaluators for the 
whole architecture to perform the task efficiently. 

 

We already have discussed SAMOA and Storm’s conventions in section 2.2.2 – 2.2.3. 
In this chapter, we analyze each part of the pyramid separately and in more details. We 
also provide some pseudo-like sample Java code of some parts of each component. 

 

FIGURE 14. Full stack architecture pyramid  

Sentinel 

SAMOA 

Apache Storm 
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3.1 SAMOA-SPE 

SPEs offer different and through fault-tolerance mechanisms that handle possible issues 
in node communications, since any such deficiencies can become a bottleneck for the 
system. Our selection of SPE is Apache Storm that has the capability to offer real-time 
processing of stream data model (Gray et al, 2014). As mentioned earlier, Storm in-
cludes a set of stream, spouts and bolts. You can see our Storm topology in Figure 15. 

 

 

 

FIGURE 15. Our Storm Cluster’s topology 

 

3.1.1 Master 

As it can be seen in Figure 16, we submit the topology to the master node and our 
worker node is where we initialize data and resources that are needed to perform our 
real-time sentiment analysis task. Since one master can serve several workers, having 
several workers that correspond to multiple sentiment analysis tasks can add another 
level of parallelism, i.e. a hybrid parallelism approach with both task parallelism along 
with data parallelism. This is however out of the scope of this thesis work. 
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FIGURE 16. Master nodes submits the topology and fires up worker nodes 

 

3.1.2 Worker 

As you can see in Figure 17, the worker node creates and executes the real-time senti-
ment analysis task and sets some option in the task, the limit for maximum number of 
instances is set to 10!"  instances. Vertical Hoeffding Tree is stated as the classifier with 
4 parallel local statistic processors. It should be mentioned that parallelism level is set 
by trial and error on each cluster. To find the optimum number of parallelism, one can 
increase the level up to a point that no significant different in performance measures are 
seen in the learning algorithm and halt this process with the least number achieved so 
that the rest of runtime memory can be used in other parts of the tasks such as adaptive 
sliding windows, frequent item miners or real-time labeling of data. At last, Sentinel’s 
TwitterStreamInstance class as set as the source of data. We will explain Sentinels in-
ternal in the section 3.2.  
  
 
 
 
 

 
 
 
 
 
 

 
 
 

 

FIG-
URE 17. Worker node executes the real-time sentiment analysis task 

StormTopology stormTopology = StormSamoaU-
tils.argsToTopology(args); 
String topologyName = stormTopology.getTopologyName(); 
 
Config conf = new Config(); 
conf.setMaxTaskParallelism(numWorker); 
 
backtype.storm.LocalCluster cluster = new back-
type.storm.LocalCluster(); 
cluster.submitTopology(topologyName, conf, 
stormTopo.getStormBuilder().createTopology()); 
 
backtype.storm.utils.Utils.sleep(30000); 
 
cluster.killTopology(topologyName); 
cluster.shutdown(); 

 

RealTimeSentimentAnalysis rTimeSentiment = new RealTimeSenti-
mentAnalysis(); 
 
rTimeSentiment.setFactory(new SimpleComponentFactory()); 
 
rTimeSentiment.instanceLimitOption.setValue(10000000000); 
rTimeSentiment.sampleFrequencyOption.setValue(5); 
rTimeSenti-
ment.learnerOption.setValueViaCLIString("classifiers.trees.Ve
rticalHoeffdingTree -p 4"); 
rTimeSenti-
ment.streamTrainOption.setValueViaCLIString(TwitterStreamInst
ance.class.getName()); 
 
rTimeSentiment.init(); 
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3.1.3 RSentimentTask (real-time sentiment analysis task) 

RSentimentTask is where Sentinel, SAMOA’s Vertical Hoeffding Tree, query mon-
itoring and evaluator process are connected. Figure 18 shows a diagram of all compo-
nents involved in the task.  
 
 
 
 

 
 

FIGURE 18. RSentimentTask interacts with Sentinel, VHT and Evaluator 

 
The RSentimentTask starts off by setting Sentinel, as the source of Stream data, 
meaning that all content events will be read from Sentinel’s readers. After that, VHT is 
initialized. Here, we feed data that comes from Sentinel to VHT. It should be mentioned 
that we set shuffle grouping as VHT grouping mechanism. This is because at this level 
we do not sort instances based on any identifier, therefore we cannot follow key group-
ings. Selecting all mechanism exhausts extra limits to working memory due to having 
replicated instances. Since we will be using adaptive bagging approach, we prefer to 
keep as much as memory possible at this stage and therefore all grouping is not fol-
lowed neither. After that, we instantiate our evaluator that keeps track of measures that 
comes from VHT. Finally, we execute the topology.  
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FIGURE 19. RSentimentTask logic 

 

3.1.3.1 Unbalanced Data Case 
A common problem in classification of unbalanced data streams such as Twitter’s pub-
lic stream is that classifiers have high accuracy, close to 90% due to the fact that a large 
portion of instances fall into one of the classification classes. While working with sam-
ple datasets such as Go et al. (2009) data, this feature is removed because the sample 
data set is balanced, i.e. it has same number of instances for each category of sentiment.  

 

According to, Bifet and Frank (2010), in classification of unbalanced data common ac-
curacy measures or estimations that are used in small datasets such as cross-validation 
fail to provide an accurate measure in accuracy. The authors have proven that selection 
of Kappa as measure of accuracy can help neglect the mentioned error. In addition to 
that, the authors advised to use a method called “Prequental Evaluation” in which each 
instance is used to test the model and then to train the model. This approach is some-
times referred to as test-then-train. We follow Bifet and Frank (2010) approach in using 
Kappa and Prequential Evaluation in our real-time sentiment analysis task. 

 

3.2 Sentinel 

Sentinel is responsible for stream reading, pre-processing, query response, feature selec-
tion, and frequent item mining specifically for real-time sentiment analysis of Twitter 

streamSource = new PrequentialSourceProcessor(); 
streamSource.setStreamSource((InstanceStream)  
this.streamTrainOption.getValue()); 
stream-
Source.setMaxNumInstances(instanceLimitOption.getValue()); 
builder.addEntranceProcessor(streamSource); 
logger.debug("Sucessfully instantiating stream data”); 
 
classifier = (Learner) this.learnerOption.getValue(); 
classifier.init(builder, streamSource.getDataset(), 1); 
builder.connectInputShuffleStream(sourcePiOutputStream, classi-
fier.getInputProcessor()); 
logger.debug("Sucessfully instantiating VHT”); 
 
PerformanceEvaluator evaluatorVal = (PerformanceEvaluator) 
this.evaluatorOption.getValue(); 
 
evaluator = new EvaluatorProcessor.Builder(evaluatorVal) 
    
.samplingFrequency(sampleFrequencyOption.getValue()).dumpFile(d
umpFileOption.getFile()).build(); 
 
realTimeSentimentTopology = builder.build(); 
logger.debug("Sucessfully building the realTimeSentimentTopolo-
gy"); 
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public stream API. We have summarized important components of Sentinel into 5 main 
components. As with the theme of this chapter, this is a bottom-up procedure. We start 
by TwitterStreamInstace that acts as the connector of all the rest of components 
and we provide details of each of the components in subsequent sections. You can see 
the overall picture in Figure 20.  

 
 

 
 

FIGURE 20. Sentinel Class Diagram 

 

3.2.1 TwitterStreamAPIReader 

TwitterStreamAPIReader (Figure 21) reads the stream directly from Twitter 
Public Stream27. In TwitterStreamAPIReader, we use the JSON data. According 

                                                
27 https://dev.twitter.com/streaming/public 
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to Nurseito et al. (2009), JSON encoded objects are transmitted faster than XML objects 
in Java applications, while using more CPU resources. In addition, both JSON and 
XML consume the same memory. Instances are read from the random sample of user 
statuses that Twitter API represents28. Using the sample has the benefit that in case sev-
eral API consumers are connected with same API key, they will receive the same data. 
This is important because the reading process is a multi-thread process in Sentinel’s 
stream reader that with this approach, synchronization of the instances in the synopsis 
will be handled. TwitterStreamAPIReader keeps track of arrival rate of incom-
ing instances based on how fast they arrived after their last previous instance. We will 
use this as a metric for our performance analysis in our case study. 
 
 
 TwitterStreamAPIReader keeps a synopsis in-memory data structure that can 
remove or add the incoming instances to it with the maximum threshold of the instances 
that is set in the worker node and passed to it. Synopsis is implemented as a hash table 
that keeps IDs of tweets so that it can follow O(1) insertion and delete time complexity. 
First, Stream reader receives the query and performs a primitive filtering based on the 
existence of the query token in the tweet instance. After the query value is set and 
checked, the reader captures it. It then uses the open source language detect library 
called LangDetect29 to set the language of tweet onto incoming instances. The 
LangDetect library uses a Naïve Bayesian classifier that ensures over 99% precision 
in its detection  (See the library homepage form ore details). If an instance cannot guar-
antee to be of English text for 100% probability, it gets discarded. When it is ensured 
that the text is in English, TwitterStreamAPIReader sends the instance to Pipe-
Processor component that performs some text processing on the tweet status text 
and once it gets the normalized instance back, it keeps them. Whenever Twitter-
StreamInstance asks for new instance(s), Stream reader will respond with the in-
stances it has stored in its synopsis hash map.  
 
 
 
  

3.2.2 PipeProcessor 

 
Tweet texts in stream instances can include information that is excessive to our process. 
These are Twitter hyperlinks and specific characters such as @, RT, MT that are dis-
cussed in details in section 4.1. 
 
 
Similar to suggestion that was proposed in Go et al. (2009) to shrink the feature space, 
PipeProcessor sets the constant token USER for the combination of @ symbol and 
the user ID. In addition, it replaces hyperlinks within the tweet message by the token 
URL. Data pipeline keeps the history of repeated letters in distinct forms, meaning that 

                                                
28 https://dev.twitter.com/streaming/reference/get/statuses/sample 
29 https://code.google.com/p/language-detection/ 



44 
 
the word “awaaaaaaay” gets converted to “awaay” to distinguish it from “away” to keep 
a more precise feature space that results in more accurate query responses.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 21. TwitterStreamAPIReader logic 

 
 

 

public void initStream() 
{ 
    setUpStreamListener(); 
    twitterStream.sample(); 
} 
 
public void filter(String[] query) { 
    twitterStream.filter(getFilterQuery(query)); 
} 
 
public FilterQuery getFilterQuery(String[] trackAll) { 
    FilterQuery filterQuery = new FilterQuery(); 
    filterQuery.track(trackAll); 
 
    return filterQuery; 
} 
 
public void add(Status status) { 
    if (synopsis.size() < sentinel.maxInstances) { 
        insert(status); 
    } else { 
        removeOldInstances(); 
    } 
} 
 
public void insert(Status status) { 
    Tweet tweet = soap.processTweets(status.getText(), language); 
    String tweetMessage = tweet.getCleanedMessage(); 
 
    if (tweetMessage != null && !tweetMessage.trim().equals("")) { 
        synchronized (listOfTweets) { 
            synopsis.add(tweet); 
            sizeTweetList++; 
        } 
    } 
} 
 
@Override 
public void setLanguage(String language) 
{ 
    this.language = language; 
} 
 
@Override 
public String getAndRemove(int position) 
{ 
    // Get the instance and remove it afterwards 
 
public void shutdown() { 
    this.twitterStream.shutdown(); 
} 
 
private void setUpStreamListener() { 
    // multi-thread connection to twitter API  
} 
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PipeProcessor ensures that such texts are removed from the instance status text and 
instance is kept as compact as possible, without losing the context. One of core features 
that PipeProcessor does is that it labels the instance data for the training phase of 
our learning algorithms. We follow Go et al (2009)’s approach however we perform 
such task in real-time: while processing the tweet and based on the emoji icon used (sad 
or happy), we add an extra attribute to the tweet object called emotion type and after 
that we remove the emoji icons. It should be emphasized that this attribute is only used 
in training phase. This is an affordable approach due to the fact that processing time per 
instance is extremely limited. Other more sophisticated labeling approaches that take 
context into the approach are more expensive in computation and therefore are excluded 
in this study.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIGURE 22. PipeProcessor logic 

 

3.2.3 FeatureSelector 

 
According to Kogan (2014), one of the challenges in real-time stream mining is the task 
of feature selection in distributed environment. Kogan (2014) stated that feature selec-
tion requires a very high communication overhead. As Bifet et al (2011) suggested, we 
follow a straightforward feature reducer algorithm, namely term frequency-invert doc-
ument frequency (TF-IDF)30.  
 
 
In this component, data instance are treated in a bag-of-words model. First, based on 
their frequency, they are presented in a vector of words. After that, its corresponding tf-
idf values are calculated for each word or token. 
 

                                                
30 See appendix section 5.3 for definition of TF-IDF  

public Tweet processTweets(String tweetMessage, String langFilter) { 
    tweet = null; 
    tweet = new Tweet(); 
    tweet.setOriginalMessage(tweetMessage); 
    message = tweetMessage; 
 
    cleanWhiteSpace(); 
    removeEmotionsFromMessage(); 
    takeOutTwitterSpecificCharacters(); 
    setFilteredMessage(); 
 
    return tweet; 
} 
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Feature reducer has a SpaceSavingADWIN instance that is used for responding to the 
top-k queries of our feature space. We provide more details on SpaceSavingADWIN 
component in the next section. 
 
 
 

3.2.4 SpaceSavingADWIN 

 
 
In this thesis work, based on the extraordinary precision and recall results of Space Sav-
ing in top-k queries compared to different count-based algorithms in Liu et al. (2011), 
we propose the usage of Space Saving algorithm (Figure 23).  

 

 

FIGURE 23. Recall/Precision for top-k items with different Ks (Liu et. al: 2011) 

 
 
 
As Cormode and Hadjieleftheriou (2008) and Bifet and Frank (2010) showed, Space-
Saving algorithm cannot adapt to changes. If a sudden change happens in data, the fre-
quent items will become infrequent, since the algorithm removes the instances with 
lower frequencies. In this study, we follow Bifet and Frank (2010) and Bifet et al (2011) 
suggestion of using ADWIN’s to make space saving adaptable to change efficiently.  

 
 

 
SpaceSavingADWIN (Figure 25) improves the performance by keeping only the 
most relevant features within a document into our windowing model. As mentioned 
above, SpaceSavingADWIN is an adaptive approach keeps relevant instances into its 
synopsis. SpaceSavingADWIN has a synopsis hash map that keeps tokens as the key 
and a Node object as its value. Node object comprise of corresponding token, index and 
frequency of the token. SpaceSavingADWIN fills up its hash map with most popular 
tokens and drop the old ones if it exceeds the capacity of its hash map, which is default 
to 10000. SpaceSavingADWIN also uses an ADWIN frequency counter to be able 
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adapt to new changes and handle concept drift. See Bifet and Frank (2010) for more 
details. You can see a summary of SpaceSavingADWIN logic in Figure 23.  
 
 
 

3.2.5 TwitterStreamInstance 

 
TwitterStreamInstance (Figure 25) is the interface component between Sentinel 
and Real-time Sentiment Analysis task. It also acts as a controller that glues different 
parts of Sentinel together. It has several key functionalities. It checks for new incoming 
instances inside reader’s synopsis on a non-stop loop and receives them instance-by-
instance. After that it creates the stream data object that is digestible for VHT along 
with its header object and context model information. TwitterStreamInstance 
instantiates feature selector component and can decide to work with different feature 
selection mechanism31. It also keeps the SpaceSavingADWIN component to keep the 
sliding window and being able to send the query and return the response back. It also 
takes care of receiving query from RSentimentTask component and passing it on to 
the reader to use it as a keyword filter. It should be noted that TwitterStreamIn-
stance is responsible to make sure that during the training phase, model can only 
make use of our emotionType feature that was added in PipeProcessor. If this is 
not done, the classifier mode will over-fit the stream. 
 
 

3.3 Vertical Hoeffding Tree 

 
SAMOA has a VHT algorithm component that performs the learning algorithms on in-
stances that are made by TwitterStreamInstance. Since data instances are pro-
cessed to adapt to VHT’s data type, VHT just performs online learning on top of in-
stances that are received from Sentinel. In VHT component, we also make use of its 
adaptive bagging version as well. 
 

3.4 Hoeffding Tree 

 

                                                
31 In our study, we only use it with TF-IDF appraoch however it can work with n-gram models as well. 
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For our case study, in order to compare VHT with its serial version, we use MOA’s 
Hoeffding Tree algorithm component and we connect it through SAMOA-to-MOA ex-
tension library32. 

3.5 Evaluator 

Our evaluator component takes care of performing measures such as processing time 
per instance, Kappa and Query Response Time during the learning process. The 
measures are updated on every seed number of instances.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                
32 Available at: https://github.com/samoa-moa/samoa-moa 

 
    private void setStreamHeader() 
    { 
        ArrayList<Attribute> wekaAtt = new ArrayList<Attribute>(); 
        wekaAtt.add(classAtt); 
 
        this.instances = new Instances(getCLICreationString(InstanceStream.class), wekaAtt, 0); 
        this.instances.setClassIndex(0); 
    } 
 
    private void initFilterTfIdf() 
    { 
        if (filterTfIdf == null) 
        { 
            SpaceSavingADWIN sketch = new SpaceSavingADWIN(); 
            sketch.prepareForUse(); 
 
            filterTfIdf = new FilterTfIdf(sketch); 
        } 
    } 
 
    @Override 
    public InstanceExample nextInstance() 
    { 
        if (this.lastInstanceRead == null) { 
            getNextInstance(); 
        } 
 
       InstanceExample prevInstance = this.lastInstanceRead; 
 
      if (this.twitterStreamReaderSynopsis.size().newData) 
        { 
            m = this.twitterStreamReader.getAndRemove(0); 
            inst = this.filterTfIdf.filter(m, this.getHeader()); 
            if (this.writer != null) 
            { 
                try 
                { 
                    writer.write(m); 
                    writer.write("\n"); 
                } 
                catch (Exception ex) 
                { 
                    throw new RuntimeException( 
                        "Failed writing to file ", ex); 
                } 
            } 
        } 
        return result; 
    } 
 
    public String[] getSketch(int n) 
    { 
        return filterTfIdf.getTopTokens(n); 
    } 
} 
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FIGURE 25. TwitterStreamInstance logic  

 

 

FIGURE 24. SpaceSavingADWIN logic 

@Override 
public void addDoc(double docSize) { 
            if (((NodeAdwin) n).getLastDoc() != this.numDoc) { 
                double oldFreq = n.getCount(); 
                boolean change = n.addCount(0, this.numDoc); 
                if (change) { 
                    this.numberOfChanges++; 
                    this.textChanges += n.getToken() + "," + oldFreq + ","; 
                } 
                updatePosition(n); 
            } 
        } 
    } 
    if (this.numberOfChanges > 0.05 * _nodes.size()) { 
        this.textChanges = ""; 
        this.numberOfChanges = 0; 
    } 
    this.numDoc++; 
    this.numTerms += docSize; 
} 
 
@Override 
protected boolean addCount(Node n, int freq) { 
    double oldFreq = n.getCount(); 
    boolean change = n.addCount((double) freq, this.numDoc); 
    if (change) { 
        this.numberOfChanges++; 
        this.textChanges += n.getToken() + "," + oldFreq + "," + 
n.getCount() + " \n"; 
    } 
    return change; 
} 
 
static class NodeAdwin extends Node { 
 
    NodeAdwin(String token, int index, int freq) { 
        super(token, index, freq); 
    } 
 
    @Override 
    protected boolean addCount(double freq, int doc) { 
        boolean ret = this.adwinCounter.setInput(freq); 
        this.lastDoc = doc; 
        return ret; 
    } 
 
    @Override 
    protected void initCount(int freq) { 
        this.adwinCounter = new ADWIN(); 
        this.addCount(freq, 0);  
    } 
 
@Override 
public double getFreqWord(String word) { 
    return getCount(word) / (this.numTerms / (double) this.numDoc); 
} 
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4 CASE STUDY: TWITTER PUBLIC STREAM API 

In this chapter, we show application of Sentinel on Twitter Public Stream API. First, we 
discuss some basic conventions about Twitter and its APIs. In section 4.3, we present 
the results. We followed the pattern of discussing result as in Bifet et al (2011), meaning 
that first we show popular feature keywords in our feature space and after that we dis-
cuss sentiment positive polarity result. We conclude that section with discussing per-
formance, accuracy and query response time. In section 4.5, application areas that our 
software prototype might contribute in are mentioned and lastly further research is sug-
gested. 

4.1 About Twitter  

4.1.1 Conventions 

In Twitter terminology, messages contain 140 characters and describe the “status” of a 
user. In Figure 26, the user by the name of fidelio_blogger has re-tweeted a message, i.e. 
posted a copy of another user’s message, by the name of hany2m. The token RT is an 
acronym for Re-Tweet which shows that it is not an original message and source of the 
message is the user mentioned after the @ token. The tweet message itself includes a 
text about a piece of news that happened in Egypt, which is followed by a hyperlink to 
the news page and a hashtag (#) with the text Egypt. The usage of hashtag can bring 
extra context or can make the text searchable by other users that search news about 
Egypt. Companies and News agencies use such hashtag to create marketing campaigns, 
new and media to create live debates and opinion gatherings and etc. 
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FIGURE 26. A Tweet Message 

 

4.1.2 Twitter Application Programming Interfaces  

Twitter currently provides a Stream Application Programming Interface (API) and two 
HTTP based REST APIs. Twitter public stream API33 is our source of social stream 
data in this case study that is a stream data of type non-stationary. As of September 
2014, Twitter receives around 500 million tweets per day. Meaning that around 5800 
tweets are processed in every second. As the second quarter of 2014, Twitter has 271 
million registered users, and 271 million unique monthly visitors34. With the huge vol-
ume of data and fast speed of data generation, Twitter public stream API is one of the 
best choices of publicly available real-time stream data within social media websites. To 
be able to use the API, one needs a verified Twitter. API Data can be retrieved as XML 
or JSON format.  
 
 

4.2 Case Study question   

On September 2nd, 2014, the so-called Islamic State of Iraq and Levant (ISIS) released a 
YouTube video of a beheading of a man whom they identified as the American journal-
ist Steven Sotloff. This created a debate over Twitter. We wanted to show the real-time 
positive sentiment of Twitter users who mentioned the happening. In addition, to pre-
sent some measures of performance, accuracy and response time of our software proto-
type. 
 

 
 

                                                
33 https://dev.twitter.com/docs/streaming-apis/streams/public 
34 https://about.twitter.com/company 
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4.3 Result and Discussions 

For the experiment, we ran sentinel on a digital ocean35 cluster with 14GB of RAM and 
quad-core Intel 2.90GHZ CPU. Sentinel captured around 1017344 twitter instances with 
English text from August 31st to September 4th containing the keyword ISIS. The da-
taset size including the metadata that is needed for learning algorithms in SAMO is ap-
proximate 1.4GB compressed, if it was stored in disk. Arrival time rates that were cap-
tured during the experiment are represented in Table 1 and Figure 27. 

 
 

Time Period in Seconds Percentage of Total 
Instances 

 0 to 1  4.76 
1 to 2 5.31 
2 to 5 4.81 
5 to 10 13.53 
10 to 60 9.15 
60 to 3600 25.19 
> 3600  37.25 

Table 1. Arrival rates between two consecutive stream instances 

  

 

FIGURE 27. Arrival rates between two consecutive stream instances 

 
 

                                                
35 https://www.digitalocean.com/ 
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4.3.1 Top-k features 

 
Using SpaceSavingADWIN component, Table 2 shows the features are the result of 
the top-k query (k=7) during our experiment: 

 
Feature 
isis 
#terrorism 
beheading 
united states 
iraq 
massacre 
syria 

 

Table 2. Top-k query result  

4.3.2 Sentiment Analysis  

We utilized the VHT adaptive bagging with 4 parallel processors for sentiment analysis 
of tweets. In Figure 27, a sudden decrease in positive sentiments can be seen on Sep-
tember the 2nd, which was the day that the YouTube video was published on YouTube. 
This shows that our approach captured some aspects of the event successfully by reveal-
ing common disappoint or negative sentiment toward the topic.  
 

 

FIGURE 28. Positive Sentiment detection in English tweets with keyword “ISIS” 
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FIGURE 29. Processing per instance measures in seconds 

 

 

FIGURE 30. Kappa Statistic Measures 
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4.3.3 Performance Measures 

In figure 28 and Table 3, we compared the performance of VHT with serial Hoeffding 
Tree algorithms with and without their adaptive bagging versions. Since all classifiers 
are learning from the same synopsis data, we used per-instance processing time as our 
performance measures. In the comparison, VHT showed higher performance compared 
to its serial counterpart. The speedup value has not improved linearly, meaning that 
VHT is not performing 4 times better than Hoeffding Tree36, however, VHT is perform-
ing 24% better (in average) than its serial version. In case we use adaptive bagging VHT, 
3% of the performance in VHT is reduced. This is due to the fact that VHT has numer-
ous mechanisms such as “node-limiting” and “poor-attribute” removal that makes VHT 
use less memory and in more efficient ways. See Murdopo (2013) for more details. 
However, this introduces higher costs in serial Hoeffding Tree. Usage of adaptive bag-
ging on Hoeffding Tree will increase the processing time per instance to 6 in its maxi-
mum.  Based on Figure 27, this makes adaptive bagging version of Hoeffding Tree to 
have more than 14.88% data loss, which we believe to be a low performance for real-
time analytics.  
 
 

Stream Instances VHT Adaptive Bagging VHT HT Adaptive Bagging HT 
100000 0.13 0.21 1.9 2.68 
200000 0.36 0.48 2.03 3.4 
300000 0.4 0.5 2.14 3.57 
400000 0.58 0.61 2.37 3.8 
500000 0.68 0.72 2.54 4.16 
600000 0.78 0.85 2.61 4.32 
700000 0.8 0.89 2.83 4.68 
800000 0.89 0.96 2.98 4.91 
900000 0.91 0.99 3.26 5.47 
1000000 0.95 1.01 3.68 5.95 

Table 3. Processing Time per Instance 

 
 
 

4.3.4 Accuracy Measure 

In terms of accuracy measures (see Figure 30 and Table 4), adaptive bagging VHT 
shows higher accuracy results compared to its serial version. It should be mentioned 
that VHT and Hoeffding Tree have the same accuracy measures, since VHT has not 
made any improvements on accuracy measures in Hoeffding Tree (see Murdopo (2013) 
for more details) and this is apparent in our experiment as well. In general, you can see 
that all classifiers are showing less accuracy compared to most classifiers that follow 

                                                
36 It should be remembered that we utilize VHT with parallelism set to 4. 
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batch-learning model. We present three main reasons for general low accuracy results in 
our experiment: 
 

• Batch-learning algorithms can high accuracy measures even higher than 90%, 
however online learning algorithms are less accurate in general (Le Cun and 
Botto, 2004).  

• Another reason for having lower accuracy measures in both algorithms in gen-
eral is because of our approach in labeling the instances. Labeling is a costly op-
eration to perform in real-time and therefore to reduce the computational over-
head, we used a rather simple rule-based labeling approach. This of course can 
reflect in our accuracy measures as well. This is usually the case with online 
learning that the labeling procedure cannot be as sufficient and therefore compu-
tationally complex as in batch learning.  This leads to having a less optimally 
trained model. Our experience is no exception is this case.  

 
• Lastly, using Kappa as our accuracy measure will result with lower accuracy re-

sults in unbalanced data. As explained earlier, Kappa eliminates the error in 
over-accurate learners with unbalances classes and therefore this can result in 
lower accuracy measures for all classifiers. 

 
 
 
Stream Instances HT & VHT Adaptive Bagging VHT & Adaptive Bagging HT 

100000 61.43% 67.32% 
200000 60.12% 68.37% 
300000 65.67% 71.86% 
400000 69.32% 74.21% 
500000 74.01% 72.81% 
600000 61.05% 67.38% 
700000 63.04% 69.91% 
800000 62.75% 71.03% 
900000 60.77% 74.45% 
1000000 61.09% 78.02% 

Table 4. Kappa Accuracy Measures 

 
 
As you can see in Figure 30 and Table 4, a sudden decrease of accuracy for both learn-
ers is visible when approximately 600000 instances are processed. This is due to noise 
that is caused by sudden computer bot attacks. Usually computer bots sends batch of 
tweets that advertises pornography, illegal download websites to perform different at-
tacks on the Twitter Public stream API. Although the keyword filter and language de-
tection rule in our prototype should have reduced the side effects of the attack, however 
this was not the case. The noisy tweets are meaningless and they either contain tweets 
with few tokens or tweets with high number of meaningless tokens along with URLs. 
This confuses the learners, since they train and test on tweets that they are not used clas-
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sify in their model. Therefore it can decrease the accuracy of the learning algorithm in a 
rather brief period of time, however after that, both algorithms showed increased accu-
racy in classification.  
 
 

4.3.5 Query Response Time Measure 

In Figure 31, we can see the Query Response Time (QRT) for both top-k items and 
Kappa measures. It is apparent that once our synopsis contains more data, the response 
time will increase, however the change is not that significant and falls into an acceptable 
range for real-time analytics.  
 
 

4.3.6 Conclusion 

This experiment showed the high potentials of large-scale learning in distributed envi-
ronment in real-time sentiment analysis. Shifting from serial Hoeffding Tree to Vertical 
Hoeffding Tree reduced the number of data loss by more than 47.26%. Not only the 
performance was improved, but also efficient usage of memory in the parallel version 
brought the opportunity to use that extra memory for improving accuracy measures of 
Hoeffding Tree (or equivalently its parallel version) by adaptive bagging approaches 
with less cost. 
 

 
As mentioned in our objectives, our key objective was to have a better combination of 
accuracy and performance, rather than to focus solely on performance. Based on the 
results from both accuracy and performance measures, we suggest the usage of adaptive 
bagging VHT for real-time sentiment analysis in our study. Usage of adaptive bagging 
VHT introduced up to 74.01% of improvements in accuracy measures (63.93% in aver-
age). On the other hand, Adaptive Bagging VHT only lost less than 4.76% of instances 
in our real-time data. It is apparent that the same setting for the serial version does not 
hold. Adaptive bagging for Hoeffding Tree showed poor performance result that can 
have up to 14.88% data loss. We believe that based this result, we do not recommend 
usage of adaptive bagging in serial Hoeffding tree. 

4.4 Application areas 

Generally, real-time sentiment analysis can be applied in different organizations, prod-
ucts and brands and therefore the application area is vast. The knowledge of real-time 
sentiment analysis of social streams helps to understand what social media users think 
or express “right now”. Applications of real-time sentiment analysis of Twitter stream 
have brought a lot of opportunities in marketing, news monitoring, customer satisfaction 
and so on. We showed an example on how news can be monitored in a social media like 
Twitter and detect sudden changes in real-time and having the ability to perform senti-
ment analysis in real-time. An example in marketing is when a marketing campaign is 
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launched and analysts can track customer’s response to the campaign and feedback in 
real-time. Another example is to evaluate customer satisfaction when a product is re-
leased or a new decision is made in a company and see immediate reactions of custom-
ers or fans of the company. It also applies in the prevention of disasters before they turn 
into crisis such as natural disasters or business disaster. As an example, business crisis 
such as 2010 Toyota’s crisis can become visible and prevented in real-time. Lastly, real-
time sentiment analysis can analyze sentiments of users in live debates. Recently a large 
portion of Twitter users participates in debates, which are mainly organized from TV, 
radio shows and news agencies. Users send a tweet about their opinion following a cer-
tain hashtag (#); therefore in this manner Twitter becomes an open polling platform. 

 
 
 
 

 
 

FIGURE 31. Query Response Time 

4.5 Further research 

In this study we mainly emphasized on distributed supervised learning on social streams 
in real-time, however there are more interesting sources of data stream that are not yet 
evaluated. Sentinel can adapt to more stream sources and add functionalities to address 
the needs for those sources and bring new sentiment results from them. One further re-
search topic can be to enable generic classification task in Sentinel, which are not nec-
essarily related to sentiment analysis. Sentinel can be also developed to be used with 
more distributed classifiers in future. The real-time clustering of social stream is another 
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young field that Sentinel can be developed in. Lastly, Sentinel can also benefit from 
having its own real-time visualization component in future to capture reflection of data 
customized to data stream mining needs. 
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SUMMARY 

Sentiment analysis on Twitter stream has been a topic of research for more than a 
decade. Several non-commercial libraries and software were developed to perform 
sentiment analysis, however none of them performed the analytics in real-time for 
Twitter data. We addressed the problem using large-scale online learning and 
specifically online parallel decision trees. We used SAMOA’s VHT learner with 
Apache Storm as our Stream Processing Engine. However, utilizing only VHT and 
Apache Storm could not solve the problem at hand. Therefore, we also developed an 
open-source Java library called Sentinel that enables real-time Twitter stream reading, 
in-memory pre-processing computations and data structures, feature selection, frequent 
miner algorithms and etc. that completes our architecture. In Chapter 3, we showed the 
architecture of our solution and its applicability and usefulness was shown in chapter 4. 
The result of this study is communicated in Rahnama (2014) from chapter 1 to chapter 4.  
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5 APPENDIX  
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5.1 Kappa Statistic 

 
According to Carletta (1996), Kappa is a measure of agreement between k raters. Each 
of k rater classifies N items into C categories that are mutually exclusive. Kappa can be 
formulated as follows: 

 

K =   
𝑃! −   𝑃!
1−   𝑃!

 

 

in which 𝑃! is the number of time the k raters classify items into the same categories and 
𝑃! is the number of times they perform it by pure chance.  
 
 

5.2 Information gain 

According to Han and Kamber (2006, pp. 297), information gain is a popular method 
for attribute selection measures in decision trees. Suppose T is the tuples of a set called 
S. Also, assume a random variable with 𝑘  number of probability functions 𝑝!,𝑝!,… ,𝑝! 
in which pi is the probability of a tuple in S belonging to 𝐶𝑙𝑎𝑠𝑠!   (𝑖 = 1,… , 𝑘). Infor-
mation gain can be formulated as: 

 

𝐼𝑛𝑓𝑜 𝑆 =   −    𝑝!   
!

!!!

𝑙𝑜𝑔!(𝑝!) 

 

When using Information gain as selection measures, the attribute that has the highest 
information gain value is attribute that we perform the split on. See Han and Kamber 
(2006) for more details. 

 

5.3 TF-IDF 

According to Rajaraman and Ullman (2012, pp. 8), Term Frequency times Inverse Doc-
ument Frequency (TF-IDF) assigns a value that represents the weight of a token (word) 
in a document. The TF-IDF of the token 𝑖  in document 𝑗 can be formulated as: 
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𝑡𝑓!" . 𝑖𝑑𝑓! 
 
Suppose token 𝑖 appears in 𝑛!"!#$ number of 𝑁  number of documents. Then, 
 

𝑖𝑑𝑓! = log
𝑁

𝑛!"!#$
 

 
On the other hand, suppose 𝑓!" is the number of occurrences of token 𝑖 in document 𝑗. 
As a result,  
 

𝑡𝑓!" =   
𝑓!"

𝑚𝑎𝑥!𝑓!"
 

 
Meaning that division on number of all tokens in the document normalizes the token 
frequency of token 𝑖 in document 𝑗.  
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