University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Polynomimatriisit

Thumbnail
View/Open
472.1 Kb

Downloads:  
Show download detailsHide download details  
Authors
Lindberg, Antti
Date
2014
Discipline
MatematiikkaMathematics

 
Tämän tutkielman sisältö voidaan karkeasti jakaa kahteen osaan. Ensimmäisessä on tarkoituksena tarkastella polynomimatriiseja ja erityisesti osoittaa toimiviksi kaksi niiden muokkaamiseen soveltuvaa algoritmia. Algoritmit toimivat osittain samalla idealla kuin lineaarialgebran perusteista tuttu Gaussin ja Jordanin menetelmä. Polynomit tuovat menetelmiin kuitenkin uutta sisältöä erityisesti jaollisuusominaisuuksiensa vuoksi. Tarkasteltavat matriisit ovat aina neliömatriiseja, ja polynomien kerroinkunnan karakteristika oletetaan nollaksi. Ensimmäinen algoritmi osoittaa, että Gaussin menetelmän polynomimatriiseille yleistetyillä rivioperaatioilla voidaan aina muokata polynomimatriisi yläkolmiomuotoon. Toinen puolestaan ottaa käyttöön myös sarakeoperaatiot. Tällöin voidaan muokata mikä tahansa polynomimatriisi sellaiseksi diagonaalimatriisiksi, jonka nollasta eroavat lävistäjäpolynomit ovat perusmuotoisia, ja edellinen jakaa aina seuraavan. Lisäksi nollapolynomit voivat esiintyä lävistäjällä vain siten, että nollapolynomia seuraava lävistäjäpolynomi on myös nollapolynomi. Tällaista muotoa olevaa polynomimatriisia kutsutaan alkuperäisen matriisin Smithin normaalimuodoksi. Se on lisäksi yksikäsitteinen, mikä on myös tarkoituksena osoittaa. Tulos tarkoittaa myös sitä, että jokainen polynomimatriisi on ekvivalentti Smithin normaalimuotonsa kanssa. Tutkielman toisena osana on esitellyn polynomimatriisien teorian hyödyntäminen kuntakertoimisten matriisien teoriassa. Yhtenä keskeisimpänä tavoitteena on määritellä kuntakertoimisen matriisin karakteristinen polynomi käyttämättä lainkaan determinanttia. Tämä tapahtuu hyödyntämällä polynomimatriisin yläkolmiomuotoa. Vaihtoehtoisena laskutapana esitetään myös polynomirenkaan osamääräkuntaa hyödyntävä keino. Toinen tämän jälkimmäisen osan päätavoitteista on määritellä Smithin normaalimuodon avulla kuntakertoimiselle matriisille similaarisuusinvariantit ja osoittaa, että niistä voidaan päätellä matriisin Frobeniuksen ja Jordanin muodot. Teoria pohjautuu lauseeseen, jonka mukaan kuntakertoimiset matriisit A ja B ovat similaariset täsmälleen silloin, kun polynomimatriisit A-xI ja B-xI ovat ekvivalentit. Toisin sanoen näillä polynomimatriiseilla on silloin sama Smithin normaalimuoto. ...
Keywords
Matriisiteoria Lineaarialgebra Polyomimatriisit Karakteristinen polynomi Smithin normaalimuoto Similaarisuusinvariantit Frobeniuksen muoto Jordanin muoto matriisiteoria lineaarialgebra polynomit matriisit
URI

http://urn.fi/URN:NBN:fi:jyu-201408252627

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [24512]

Related items

Showing items with similar title or keywords.

  • Matriisin Jordanin muoto 

    Artemenko, Maryia (2020)
    Tämä matematiikan pro gradu -tutkielma käsittelee matriisin Jordanin normaalimuotoa. Jordanin muoto on matriisin muoto, joka on lähempänä diagonaalimuotoa. Se on hyödyllinen tapauksessa, kun matriisi ei ole diagonalisoituva. ...
  • Matriisin Hessenbergin muoto 

    Holopainen, Niko (2013)
  • Polynomial and horizontally polynomial functions on Lie groups 

    Antonelli, Gioacchino; Le Donne, Enrico (Springer, 2022)
    We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we ...
  • Itsetarkistuvat STACK-tehtävät kurssille Lineaarinen algebra ja geometria 1 

    Räihä, Sauli (2019)
    Tässä pro gradu -tutkielmassa esitellään Jyväskylän yliopiston matematiikan ja tilastotieteen laitoksella luennoitavalle kurssille Lineaarinen algebra ja geometria 1 luotu STACK-tehtäväkokoelma ja työprosessin eri vaiheita. ...
  • Matriisin eksponenttifunktio ja differentiaaliyhtälöryhmät 

    Maaskola, Petra (2013)
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre