Anomaly detection from network logs using diffusion maps
Sipola, T., Juvonen, A., & Lehtonen, J. (2011). Anomaly detection from network logs using diffusion maps. In L. Iliadis, & C. Jayne (Eds.), Engineering Applications of Neural Networks (pp. 172-181). Springer. IFIP Advances in Information and Communication Technology, 363. https://doi.org/10.1007/978-3-642-23957-1_20
Julkaistu sarjassa
IFIP Advances in Information and Communication TechnologyPäivämäärä
2011Tekijänoikeudet
© Springer. This is an electronic final draft version of an article whose final and definitive form has been published by Springer.
The goal of this study is to detect anomalous queries from network logs using a dimensionality reduction framework. The fequencies of 2-grams in queries are extracted to a feature matrix. Dimensionality reduction is done by applying diffusion maps. The method is adaptive and thus does not need training before analysis. We tested the method with data that includes normal and intrusive traffic to a web server. This approach finds all intrusions in the dataset.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-642-23956-4Kuuluu julkaisuun
Engineering Applications of Neural NetworksISSN Hae Julkaisufoorumista
1868-4238Asiasanat
Alkuperäislähde
http://www.springerlink.com/index/N615170400W21N13.pdfJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/20672180
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Dimensionality reduction framework for detecting anomalies from network logs
Sipola, Tuomo; Juvonen, Antti; Lehtonen, Joel (CRL Publishing, 2012)Dynamic web services are vulnerable to multitude of intrusions that could be previously unknown. Server logs contain vast amounts of information about network traffic, and finding attacks from these logs improves the ... -
Combining conjunctive rule extraction with diffusion maps for network intrusion detection
Juvonen, Antti; Sipola, Tuomo (IEEE, 2013)Network security and intrusion detection are important in the modern world where communication happens via information networks. Traditional signature-based intrusion detection methods cannot find previously unknown ... -
Adaptive framework for network traffic classification using dimensionality reduction and clustering
Juvonen, Antti; Sipola, Tuomo (IEEE, 2012)Information security has become a very important topic especially during the last years. Web services are becoming more complex and dynamic. This offers new possibilities for attackers to exploit vulnerabilities by inputting ... -
Using affinity perturbations to detect web traffic anomalies
Shmueli, Yaniv; Sipola, Tuomo; Shabat, Gil; Averbuch, Amir (EURASIP, 2013)The initial training phase of machine learning algorithms is usually computationally expensive as it involves the processing of huge matrices. Evolving datasets are challenging from this point of view because changing ... -
Unsupervised network intrusion detection systems for zero-day fast-spreading network attacks and botnets
Vahdani Amoli, Payam (University of Jyväskylä, 2015)Today, the occurrence of zero-day and complex attacks in high-speed networks is increasingly common due to the high number vulnerabilities in the cyber world. As a result, intrusions become more sophisticated and fast ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.