Hamilton-Jacobi equations
Tämä Pro gradu-tutkielma käsittelee Hamiltonin ja Jacobin yhtälöitä, jotka kuvaavat mekaanisen järjestelmän kehitystä klassisen mekaniikan puitteissa. Hamiltonin ja Jacobin yhtälöitä käytetään myös säätöteoriassa sekä kvanttimekaniikassa. Hamiltonin mekaaniikan kehitti Sir William Rowan Hamilton valon käytöksen mallintamiseen ja Carl Gustav Jacob Jacobi kehitti sitä edelleen.
Tutkielmassa annamme ehdot, joiden nojalla Hopfin ja Laxin kaava antaa ratkaisun Hamiltonin ja Jacobin yhtälöihin liittyvään alkuarvo-ongelmaan. Sen jälkeen määritämme sopivan heikon ratkaisun käsitteen ja näytämme heikkojen ratkaisujen olevan yksikäsitteisiä tietyillä ehdoilla. Lähestymme Hamiltonin ja Jacobin alkuarvo-ongelmaa asettamalla variaatio-ongelman, jonka Hopfin ja Laxin kaava ratkaisee. Osoitamme, että Hopfin ja Laxin kaavan antama ratkaisuehdokas on Lipschitz-jatkuva ja toteuttaa dynaamisen ohjelmoinnin periaatteen, joka kytkee sen optimaalisen säädön teoriaan. Sen jälkeen näytämme, että Hopfin ja Laxin kaavan antama funktio todella ratkaisee Hamiltonin ja Jacobin yhtälön alkuarvo-ongelman.
Tärkeä työkalu Hopfin ja Laxin kaavan käsittelyssä on Legendren muunnos, joka muuntaa funktion sen konveksiksi duaaliksi. Näytämme, että konvekseille ja tarpeeksi nopeasti kasvaville funktioille Legendren muunnos sovellettuna kahteen kertaan antaa alkuperäisen funktion takaisin. Tutkielmassa tutkitaan Hamiltonin ja Lagrangen funktioita, jotka täyttävät nämä ehdot.
Lopuksi määrittelemme, mitä tarkoitamme heikolla ratkaisulla Hamiltonin ja Jacobin yhtälön alkuarvo-ongelmaan. Määritelmässä käytämme semikonkaaveja funktioita. Osoitamme, että alkuehtojen semikonkaavius tai Hamiltonin funktion vahva konveksisuus takaavat heikkojen ratkaisuiden semikonkaaviuden, ja että semikonkaaveja ratkaisuja voi olla vain yksi, kunhan alkuarvo-ongelma täyttää sopivat säännöllisyysehdot.
...
Keywords
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [29750]
License
Related items
Showing items with similar title or keywords.
-
Säätöteoria ja Hamilton-Jacobi-yhtälöt
Riikonen, Hermanni (2008) -
Hamilton-Jacobi flows and characterization of solutions of Aronsson equations
Juutinen, Petri; Saksman, Eero (Scuola normale superiore di Pisa, 2007) -
Jacobi fields, bundles and connections
Väisänen, Olli (2020)Tämä teksti käsittelee Jacobin kenttiä ja niiden määrittelemiseen tarvittavia rakenteita, erityisesti vektorikimppuja ja konnektioita. Lopputuloksena osoitetaan yksi yhteen-vastaavuus Jacobin kenttien ja geodeesiperheiden ... -
An Inverse Problem for the Relativistic Boltzmann Equation
Balehowsky, Tracey; Kujanpää, Antti; Lassas, Matti; Liimatainen, Tony (Springer, 2022)We consider an inverse problem for the Boltzmann equation on a globally hyperbolic Lorentzian spacetime (M, g) with an unknown metric g. We consider measurements done in a neighbourhood V⊂M of a timelike path μ that connects ...