Analyzing Participants’ Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features
Vedernikov, A., Sun, Z., Kykyri, V.-L., Pohjola, M., Nokia, M., & Li, X. (2024). Analyzing Participants’ Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features. In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (pp. 389-399). IEEE. IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops. https://doi.org/10.1109/cvprw63382.2024.00044
Julkaistu sarjassa
IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshopsTekijät
Päivämäärä
2024Pääsyrajoitukset
Embargo päättyy: 2026-09-27Pyydä artikkeli tutkijalta
Tekijänoikeudet
© IEEE
Engagement measurement finds application in healthcare, education, services. The use of physiological and behavioral features is viable, but the impracticality of traditional physiological measurement arises due to the need for contact sensors. We demonstrate the feasibility of unsupervised remote photoplethysmography (rPPG) as an alternative for contact sensors in deriving heart rate variability (HRV) features, then fusing these with behavioral features to measure engagement in online group meetings. Firstly, a unique Engagement Dataset of online interactions among social workers is collected with granular engagement labels, offering insight into virtual meeting dynamics. Secondly, a pre-trained rPPG model is customized to reconstruct rPPG signals from video meetings in an unsupervised manner, enabling the calculation of HRV features. Thirdly, the feasibility of estimating engagement from HRV features using short observation windows, with a notable enhancement when using longer observation windows of two to four minutes, is demonstrated. Fourthly, the effectiveness of behavioral cues is evaluated when fused with physiological data, which further enhances engagement estimation performance. An accuracy of 94% is achieved when only HRV features are used, eliminating the need for contact sensors or ground truth signals; use of behavioral cues raises the accuracy to 96%. Facial analysis offers precise engagement measurement, beneficial for future applications.
...
Julkaisija
IEEEEmojulkaisun ISBN
979-8-3503-6548-1Konferenssi
IEEE/CVF Computer Society Conference on Computer Vision and Pattern Recognition WorkshopsKuuluu julkaisuun
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)ISSN Hae Julkaisufoorumista
2160-7508Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/243254305
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by the Research Council of Finland (former Academy of Finland) Academy Professor project EmotionAI (grants 336116, 345122), and the Finnish Work Environment Fund (Project 200414). The authors also acknowledge CSC-IT Center for Science, Finland, for providing computational resources.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Developing a Method for Measuring Science and Technology Oriented Creativity (STOC)
Pavlysh, Eduard V.; Astapchuk, Sviatlana V.; Reid, Alecia Adelaide May; Rio, Carlos Rioja del; Mäkelä, Tiina; Fenyvesi, Kristof; Pnevmatikos, Dimitris; Christodoulou, Panagiota; Mäkiö, Juho (Walter de Gruyter GmbH, 2021)The article contains the results of a research within the STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project funded by the European Union’s Horizon-2020 research and innovation program ... -
Musical Feature and Novelty Curve Characterizations as Predictors of Segmentation Accuracy
Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri (Aalto-yliopisto, 2017)Novelty detection is a well-established method for analyzing the structure of music based on acoustic descriptors. Work on novelty-based segmentation prediction has mainly concentrated on enhancement of features and ... -
Thermal Measurement of Arterial Pulse using Heat Flux Sensors
Immonen, Antti; Pettersson, Ante B. V.; Levikari, Saku; Peltonen, Heikki; Kyröläinen, Heikki; Silventoinen, Pertti; Kuisma, Mikko (Institute of Electrical and Electronics Engineers (IEEE), 2024)In this paper, the novel concept of using heat flux sensors (HFS) to measure arterial pulse on the skin surface is validated. The heat flux (HF) signal is compared with simultaneously measured electrocardiogram (ECG) and ... -
Participation in sociolinguistic research
Bodó, Csanád; Barabás, Blanka; Fazakas, Noémi; Gáspár, Judit; Jani‐Demetriou, Bernadett; Laihonen, Petteri; Lajos, Veronika; Szabó, Gergely (Wiley, 2022)Involving speakers in research on their linguistic practices has been at the core of sociolinguistics since the inception of the field. In contrast to social sciences, however, sociolinguists have rarely addressed the ... -
Facilitating Participation in Second Language Remote Meetings
Kotilainen, Lari; Oittinen, Tuire; Kurhila, Salla; Lehtimaja, Inkeri (University of Copenhagen, 2023)The affordances for organising social conduct in multilingual interaction vary depending on the setting. This article examines multilingual remote meetings and the ways in which second language speakers’ participation in ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.