dc.contributor.author | Impiö, Mikko | |
dc.contributor.author | Raitoharju, Jenni | |
dc.date.accessioned | 2024-12-19T07:14:51Z | |
dc.date.available | 2024-12-19T07:14:51Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Impiö, M., & Raitoharju, J. (2024). Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes. In <i>32nd European Signal Processing Conference (EUSIPCO 2024) : Proceedings</i> (pp. 1272-1276). IEEE. European Signal Processing Conference. <a href="https://doi.org/10.23919/eusipco63174.2024.10715139" target="_blank">https://doi.org/10.23919/eusipco63174.2024.10715139</a> | |
dc.identifier.other | CONVID_244067485 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/99083 | |
dc.description.abstract | Image-based species identification could help scaling biodiversity monitoring to a global scale. Many challenges still need to be solved in order to implement these systems in real-world applications. A reliable image-based monitoring system must detect out-of-distribution (OOD) classes it has not been presented before. This is challenging especially with fine-grained classes. Emerging environmental monitoring techniques, DNA metabarcoding and eDNA, can help by providing information on OOD classes that are present in a sample. In this paper, we study if DNA barcodes can also support in finding the outlier images based on the outlier DNA sequence's similarity to the seen classes. We propose a re-ordering approach that can be easily applied on any pre-trained models and existing OOD detection methods. We experimentally show that the proposed approach improves taxonomic OOD detection compared to all common baselines. We also show that the method works thanks to a correlation between visual similarity and DNA barcode proximity. The code and data are available at https://github.com/lmikkoim/ldnaimg-ood. | en |
dc.format.extent | 2761 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | IEEE | |
dc.relation.ispartof | 32nd European Signal Processing Conference (EUSIPCO 2024) : Proceedings | |
dc.relation.ispartofseries | European Signal Processing Conference | |
dc.rights | In Copyright | |
dc.subject.other | image-based taxonomic identification | |
dc.subject.other | out-of-distribution detection | |
dc.subject.other | DNA barcodes | |
dc.title | Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202412197894 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 979-8-3315-1977-3 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1272-1276 | |
dc.relation.issn | 2219-5491 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © IEEE | |
dc.rights.accesslevel | embargoedAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | European Signal Processing Conference | |
dc.subject.yso | biodiversiteetti | |
dc.subject.yso | signaalinkäsittely | |
dc.subject.yso | monitorointi | |
dc.subject.yso | lajinmääritys | |
dc.subject.yso | luokitus (toiminta) | |
dc.subject.yso | DNA-viivakoodit | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | konenäkö | |
dc.subject.yso | systematiikka (biologia) | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5496 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12266 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3628 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17523 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12668 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28412 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2618 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19946 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.23919/eusipco63174.2024.10715139 | |
jyx.fundinginformation | The work was funded by Research Council of Finland project 333497. | |
dc.type.okm | A4 | |