Show simple item record

dc.contributor.authorImpiö, Mikko
dc.contributor.authorRaitoharju, Jenni
dc.date.accessioned2024-12-19T07:14:51Z
dc.date.available2024-12-19T07:14:51Z
dc.date.issued2024
dc.identifier.citationImpiö, M., & Raitoharju, J. (2024). Improving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes. In <i>32nd European Signal Processing Conference (EUSIPCO 2024) : Proceedings</i> (pp. 1272-1276). IEEE. European Signal Processing Conference. <a href="https://doi.org/10.23919/eusipco63174.2024.10715139" target="_blank">https://doi.org/10.23919/eusipco63174.2024.10715139</a>
dc.identifier.otherCONVID_244067485
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/99083
dc.description.abstractImage-based species identification could help scaling biodiversity monitoring to a global scale. Many challenges still need to be solved in order to implement these systems in real-world applications. A reliable image-based monitoring system must detect out-of-distribution (OOD) classes it has not been presented before. This is challenging especially with fine-grained classes. Emerging environmental monitoring techniques, DNA metabarcoding and eDNA, can help by providing information on OOD classes that are present in a sample. In this paper, we study if DNA barcodes can also support in finding the outlier images based on the outlier DNA sequence's similarity to the seen classes. We propose a re-ordering approach that can be easily applied on any pre-trained models and existing OOD detection methods. We experimentally show that the proposed approach improves taxonomic OOD detection compared to all common baselines. We also show that the method works thanks to a correlation between visual similarity and DNA barcode proximity. The code and data are available at https://github.com/lmikkoim/ldnaimg-ood.en
dc.format.extent2761
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof32nd European Signal Processing Conference (EUSIPCO 2024) : Proceedings
dc.relation.ispartofseriesEuropean Signal Processing Conference
dc.rightsIn Copyright
dc.subject.otherimage-based taxonomic identification
dc.subject.otherout-of-distribution detection
dc.subject.otherDNA barcodes
dc.titleImproving Taxonomic Image-based Out-of-distribution Detection With DNA Barcodes
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202412197894
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn979-8-3315-1977-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1272-1276
dc.relation.issn2219-5491
dc.type.versionacceptedVersion
dc.rights.copyright© IEEE
dc.rights.accesslevelembargoedAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Signal Processing Conference
dc.subject.ysobiodiversiteetti
dc.subject.ysosignaalinkäsittely
dc.subject.ysomonitorointi
dc.subject.ysolajinmääritys
dc.subject.ysoluokitus (toiminta)
dc.subject.ysoDNA-viivakoodit
dc.subject.ysokoneoppiminen
dc.subject.ysokonenäkö
dc.subject.ysosystematiikka (biologia)
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5496
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p3628
jyx.subject.urihttp://www.yso.fi/onto/yso/p17523
jyx.subject.urihttp://www.yso.fi/onto/yso/p12668
jyx.subject.urihttp://www.yso.fi/onto/yso/p28412
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2618
jyx.subject.urihttp://www.yso.fi/onto/yso/p19946
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.23919/eusipco63174.2024.10715139
jyx.fundinginformationThe work was funded by Research Council of Finland project 333497.
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright