Show simple item record

dc.contributor.authorSami, Malik Abdul
dc.contributor.authorWaseem, Muhammad
dc.contributor.authorZhang, Zheying
dc.contributor.authorRasheed, Zeeshan
dc.contributor.authorSystä, Kari
dc.contributor.authorAbrahamsson, Pekka
dc.contributor.editorPfahl, Dietmar
dc.contributor.editorHuerta, Javier Gonzalez
dc.contributor.editorKlünder, Jil
dc.contributor.editorAnwar, Hina
dc.date.accessioned2024-12-19T05:49:21Z
dc.date.available2024-12-19T05:49:21Z
dc.date.issued2025
dc.identifier.citationSami, M. A., Waseem, M., Zhang, Z., Rasheed, Z., Systä, K., & Abrahamsson, P. (2025). Early Results of an AI Multiagent System for Requirements Elicitation and Analysis. In D. Pfahl, J. G. Huerta, J. Klünder, & H. Anwar (Eds.), <i>Product-Focused Software Process Improvement : 25th International Conference, PROFES 2024, Tartu, Estonia, December 2–4, 2024, Proceedings</i> (pp. 307-316). Springer. Lecture Notes in Computer Science. <a href="https://doi.org/10.1007/978-3-031-78386-9_20" target="_blank">https://doi.org/10.1007/978-3-031-78386-9_20</a>
dc.identifier.otherCONVID_244291007
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/99060
dc.description.abstractIn agile software development, user stories capture requirements from the user’s perspective, emphasizing their needs and each feature’s value. Writing concise and quality user stories is necessary for guiding software development. Alongside user story generation, prioritizing these requirements ensures that the most important features are developed first, maximizing project value. This study explores the use of Large Language Models (LLMs) to automate the process of user story generation, quality assessment, and prioritization. We implemented a multi-agent system using Generative Pre-trained Transformers (GPT), specifically GPT-3.5 and GPT-4o, to generate and prioritize user stories from the initial project description. Our experiments on a real-world project demonstrate that GPT-3.5 handled user story generation well, achieving a higher semantic similarity score comnpared to the GPT-4o. Both models showed consistent performance in prioritizing requirements, effectively identifying the core features of the application. These early results indicate that LLMs have significant potential for automating requirements analysis, particularly generating and prioritizing user stories.en
dc.format.extent416
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofProduct-Focused Software Process Improvement : 25th International Conference, PROFES 2024, Tartu, Estonia, December 2–4, 2024, Proceedings
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsIn Copyright
dc.titleEarly Results of an AI Multiagent System for Requirements Elicitation and Analysis
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202412197871
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-031-78385-2
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange307-316
dc.relation.issn0302-9743
dc.type.versionacceptedVersion
dc.rights.copyright© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
dc.rights.accesslevelembargoedAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on on Product-Focused Software Process Improvement
dc.subject.ysotekoäly
dc.subject.ysoohjelmistosuunnittelu (tietotekniikka)
dc.subject.ysoketterät menetelmät
dc.subject.ysoohjelmistokehitys
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p27066
jyx.subject.urihttp://www.yso.fi/onto/yso/p25892
jyx.subject.urihttp://www.yso.fi/onto/yso/p21530
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-78386-9_20
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright