Show simple item record

dc.contributor.authorMoradi, Kayvan
dc.contributor.authorMelander, Marko M.
dc.date.accessioned2024-12-18T09:20:56Z
dc.date.available2024-12-18T09:20:56Z
dc.date.issued2025
dc.identifier.citationMoradi, K., & Melander, M. M. (2025). Electronic structure methods for simulating the applied potential in semiconductor electrochemistry. <i>Current Opinion in Electrochemistry</i>, <i>49</i>, Article 101615. <a href="https://doi.org/10.1016/j.coelec.2024.101615" target="_blank">https://doi.org/10.1016/j.coelec.2024.101615</a>
dc.identifier.otherCONVID_244181054
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/99050
dc.description.abstractSemiconductor electrodes (SCEs) play a decisive role in e.g. clean energy conversion technologies but understanding their complex electrochemistry remains an outstanding challenge. Herein, we review electronic structure methods for describing the applied electrode potential in simulations of semiconductor-electrolyte interfaces. We emphasize that inclusion of the electrode potential is significantly more challenging for SCEs than for metallic electrodes because SCEs require accurate models of semiconductor capacitance, including the space-charge region and surface effects, as well as the electrolyte double-layer capacitance. We discuss how these physicochemical complications challenge the development of atomistic models of SCE and how they impact the applicability of the computational hydrogen electrode, capacitance correction, grand canonical DFT, and Green function methods to model SCEs. We highlight the need for continued methodological development and conclude that integrating advanced atomistic models of SCEs with grand canonical, constant inner potential DFT or Green function methods holds promise for accurate SCE simulations.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesCurrent Opinion in Electrochemistry
dc.rightsCC BY 4.0
dc.subject.othersemiconductor electrodes
dc.subject.othergrand canonical DFT
dc.subject.othercomputational hydrogen electrode
dc.subject.othercapacitance corrections
dc.subject.othergreen’s function
dc.subject.otherconstant potential
dc.subject.otherelectrode potential
dc.titleElectronic structure methods for simulating the applied potential in semiconductor electrochemistry
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202412187863
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn2451-9103
dc.relation.volume49
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber338228
dc.subject.ysocleantech
dc.subject.ysosähkökemia
dc.subject.ysolaskennallinen kemia
dc.subject.ysoelektrokatalyysi
dc.subject.ysoelektrodit
dc.subject.ysopuolijohdetekniikka
dc.subject.ysopuolijohteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27419
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
jyx.subject.urihttp://www.yso.fi/onto/yso/p38660
jyx.subject.urihttp://www.yso.fi/onto/yso/p14077
jyx.subject.urihttp://www.yso.fi/onto/yso/p11465
jyx.subject.urihttp://www.yso.fi/onto/yso/p18256
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.coelec.2024.101615
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThe authors acknowledge the financial support by the Academy of Finland (grant number #338228).
dc.type.okmA2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0