Show simple item record

dc.contributor.authorJoensuu, Laura
dc.contributor.authorRautiainen, Ilkka
dc.contributor.authorHautala, Arto J.
dc.contributor.authorSiekkinen, Kirsti
dc.contributor.authorPirnes, Katariina
dc.contributor.authorTammelin, Tuija H.
dc.date.accessioned2024-12-12T10:27:11Z
dc.date.available2024-12-12T10:27:11Z
dc.date.issued2024
dc.identifier.citationJoensuu, L., Rautiainen, I., Hautala, A. J., Siekkinen, K., Pirnes, K., & Tammelin, T. H. (2024). Prediction of Multisite Pain Incidence in Adolescence Using a Machine Learning Approach : A 2‐Year Longitudinal Study. <i>Health Science Reports</i>, <i>7</i>(12), Article e70252. <a href="https://doi.org/10.1002/hsr2.70252" target="_blank">https://doi.org/10.1002/hsr2.70252</a>
dc.identifier.otherCONVID_244521487
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98979
dc.description.abstractBackground and Aims Multisite pain is a prevalent and significant issue among adolescents, often associated with adverse physical, psychological, and social outcomes. We aimed to (1) predict multisite pain incidence in the whole body and in the musculoskeletal sites in adolescents, and (2) explore the sex-specific predictors of multisite pain incidence using a novel machine learning (ML) approach (random forest, AdaBoost, and support vector classifier). Methods A 2-year longitudinal observational study (2013–2015) was conducted in a population-based sample of Finnish adolescents (N = 410, 57% girls, 12.5 years (SD = 1.2) at baseline). Three different data sets were used. First data included 48 pre-selected variables relevant for adolescents' health and wellbeing. The second data included nine physical fitness variables related to the Finnish national ‘Move!’ monitoring system for health-related fitness. The third data set included all available baseline data (392 variables). Multisite pain was self-reported weekly pain during the past 3 months manifesting in at least three sites and not related to any known disease or injury. Musculoskeletal pain sites included the neck/shoulder, upper extremities, chest, upper back, low back, buttocks, and lower extremities. Whole body pain sites also included the head and abdominal areas. Results Overall, 16% of boys and 28% of girls developed multisite pain in the whole body and 10% and 15% in the musculoskeletal area during the 2-year follow-up. The prediction ability of ML reached area under the receiver operating characteristic curve 0.78 at highest but remained mainly < 0.7 for the majority of the methods. With ML, a broad variety of predictors were identified, with up to 33 variables showing predictive power in girls and 13 in boys. Conclusion The results highlight that rather than any isolated variable, a variety of factors contribute to future multisite pain.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesHealth Science Reports
dc.rightsCC BY 4.0
dc.subject.otherchild health
dc.subject.otherepidemiology
dc.subject.othermusculoskeletal health
dc.subject.otherpredictive modeling
dc.titlePrediction of Multisite Pain Incidence in Adolescence Using a Machine Learning Approach : A 2‐Year Longitudinal Study
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202412127801
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2398-8835
dc.relation.numberinseries12
dc.relation.volume7
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber356158
dc.subject.ysolapset (ikäryhmät)
dc.subject.ysotaustatekijät
dc.subject.ysofyysinen hyvinvointi
dc.subject.ysotuki- ja liikuntaelimet
dc.subject.ysokipu
dc.subject.ysonuoret
dc.subject.ysokoneoppiminen
dc.subject.ysomallintaminen
dc.subject.ysoepidemiologia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4354
jyx.subject.urihttp://www.yso.fi/onto/yso/p28257
jyx.subject.urihttp://www.yso.fi/onto/yso/p38424
jyx.subject.urihttp://www.yso.fi/onto/yso/p2785
jyx.subject.urihttp://www.yso.fi/onto/yso/p14193
jyx.subject.urihttp://www.yso.fi/onto/yso/p11617
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p11307
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1002/hsr2.70252
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis study was funded by Ella and Georg Ehrnrooth foundation (to LJ) and Research Council of Finland (no 356158 to IR). Data collection for this study was supported by the Juho Vainio Foundation (201410342) and the Finnish Ministry of Education and Culture (OKM/92/626/2013 to THT).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0