Show simple item record

dc.contributor.authorHünermund, Paul
dc.contributor.authorLouw, Beyers
dc.contributor.authorRönkkö, Mikko
dc.date.accessioned2024-12-04T09:46:40Z
dc.date.available2024-12-04T09:46:40Z
dc.date.issued2024
dc.identifier.citationHünermund, P., Louw, B., & Rönkkö, M. (2024). The choice of control variables in empirical management research : How causal diagrams can inform the decision. <i>Leadership Quarterly</i>, <i>Early online</i>, Article 101845. <a href="https://doi.org/10.1016/j.leaqua.2024.101845" target="_blank">https://doi.org/10.1016/j.leaqua.2024.101845</a>
dc.identifier.otherCONVID_244334298
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98805
dc.description.abstractThe Leadership Quarterly and the management community more broadly prioritize identifying causal relationships to inform effective leadership practices. Despite the availability of more refined causal identification strategies, such as instrumental variables or natural experiments, control variables remain a common strategy in leadership research. The current literature generally agrees that control variables should be chosen based on theory and that these choices should be reported transparently. However, the literature provides little guidance on how specifically potential controls can be identified, how many control variables should be used, and whether a potential control variable should be included. Consequently, the current empirical literature is not fully transparent on how controls are selected and may be contaminated with bad controls that compromise causal inference. Causal diagrams provide a transparent framework to address these issues. This article introduces causal diagrams for leadership and management researchers and presents a workflow for finding an appropriate set of control variables.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesLeadership Quarterly
dc.rightsCC BY 4.0
dc.subject.othercontrol variables
dc.subject.otherdirected acyclic graphs
dc.subject.otherstructural causal models
dc.subject.otherregression analysis
dc.subject.othercausal inference
dc.titleThe choice of control variables in empirical management research : How causal diagrams can inform the decision
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202412047622
dc.contributor.laitosKauppakorkeakoulufi
dc.contributor.laitosSchool of Business and Economicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1048-9843
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokausaliteetti
dc.subject.ysotutkimusmenetelmät
dc.subject.ysomuuttujat
dc.subject.ysojohtamisjärjestelmät
dc.subject.ysoregressioanalyysi
dc.subject.ysojohtajuus
dc.subject.ysojohtamiskulttuuri
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
jyx.subject.urihttp://www.yso.fi/onto/yso/p415
jyx.subject.urihttp://www.yso.fi/onto/yso/p16708
jyx.subject.urihttp://www.yso.fi/onto/yso/p20746
jyx.subject.urihttp://www.yso.fi/onto/yso/p2130
jyx.subject.urihttp://www.yso.fi/onto/yso/p8420
jyx.subject.urihttp://www.yso.fi/onto/yso/p24050
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.leaqua.2024.101845
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0