Show simple item record

dc.contributor.authorTirronen, Maria
dc.contributor.authorKuparinen, Anna
dc.date.accessioned2024-11-19T06:53:01Z
dc.date.available2024-11-19T06:53:01Z
dc.date.issued2024
dc.identifier.citationTirronen, M., & Kuparinen, A. (2024). Parameter estimation for allometric trophic network models : A variational Bayesian inverse problem approach. <i>Methods in Ecology and Evolution</i>, <i>Early online</i>. <a href="https://doi.org/10.1111/2041-210x.14447" target="_blank">https://doi.org/10.1111/2041-210x.14447</a>
dc.identifier.otherCONVID_243982293
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98502
dc.description.abstractDifferential equation models are powerful tools for predicting biological systems, capable of projecting far into the future and incorporating data recorded at arbitrary times. However, estimating these models' parameters from observations can be challenging because numerical methods are often required to approximate their solution. An example of such a model is the allometric trophic network model, for which studies considering its inverse problem are limited, particularly in the Bayesian framework. Here we develop a variational Bayesian method for parameter inference of the allometric trophic network model and explore how accurately we can recover its parameter values. We represent the model as a Bayesian neural network, which combines an artificial neural network with Bayesian inference, using a surrogate for the posterior distribution of model parameters, and train this model by evolutionary optimization to avoid potentially costly computation of the gradient with respect to the model parameters. Using synthetic data, we compare the accuracy of this variational inference to ordinary least squares estimation. To reduce the number of estimated parameters, we focus on the inference of functional response parameters. Our variational Bayesian method yields parameter estimates that are comparable to the ordinary least squares results in terms of accuracy. The method provides a promising approach for including uncertainty quantification in parameter estimation, which the simple ordinary least squares approach as it is does not address. Regardless of the method, potential multimodality of the inference problem is nonetheless important to keep in mind. The present study suggests a technique for parameter inference of ordinary differential equation models in the Bayesian context. We propose the method especially for validation of the allometric trophic network model against empirical data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.ispartofseriesMethods in Ecology and Evolution
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherallometric trophic network
dc.subject.otherBayesian inference
dc.subject.otherBayesian inverse problem
dc.subject.otherBayesian neuralnetwork
dc.subject.otherevolutionary optimization
dc.subject.otherfood web
dc.subject.otherODE system
dc.titleParameter estimation for allometric trophic network models : A variational Bayesian inverse problem approach
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202411197339
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2041-210X
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber951963
dc.relation.grantnumber951963
dc.relation.grantnumber770884
dc.relation.grantnumber770884
dc.relation.grantnumber317495
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/951963/EU//TREICLAKE
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/770884/EU//COMPLEX-FISH
dc.subject.ysoevoluutiobiologia
dc.subject.ysoevoluutiolaskenta
dc.subject.ysobayesilainen menetelmä
dc.subject.ysoravintoverkot
dc.subject.ysoekosysteemit (ekologia)
dc.subject.ysomallintaminen
dc.subject.ysoinversio-ongelmat
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p21944
jyx.subject.urihttp://www.yso.fi/onto/yso/p28071
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p22082
jyx.subject.urihttp://www.yso.fi/onto/yso/p4997
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p27912
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1111/2041-210x.14447
dc.relation.funderEuropean Commissionen
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuroopan komissiofi
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramCSA Coordination and Support Action, H2020en
jyx.fundingprogramERC Consolidator Granten
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramCSA Coordination and Support Action, H2020fi
jyx.fundingprogramERC Consolidator Grantfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis study was funded by the Research Council of Finland (project grant 317495 to AK). This project has also received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No 951963. The project has received funding also from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 770884).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0