Show simple item record

dc.contributor.authorZolotukhin, Mikhail
dc.contributor.authorZhang, Di
dc.contributor.authorHämäläinen, Timo
dc.contributor.editorSipola, Tuomo
dc.contributor.editorAlatalo, Janne
dc.contributor.editorWolfmayr, Monika
dc.contributor.editorKokkonen, Tero
dc.date.accessioned2024-11-14T10:56:39Z
dc.date.available2024-11-14T10:56:39Z
dc.date.issued2024
dc.identifier.citationZolotukhin, M., Zhang, D., & Hämäläinen, T. (2024). On Protection of the Next-Generation Mobile Networks Against Adversarial Examples. In T. Sipola, J. Alatalo, M. Wolfmayr, & T. Kokkonen (Eds.), <i>Artificial Intelligence for Security : Enhancing Protection in a Changing World</i> (pp. 235-258). Springer. <a href="https://doi.org/10.1007/978-3-031-57452-8_11" target="_blank">https://doi.org/10.1007/978-3-031-57452-8_11</a>
dc.identifier.otherCONVID_220922931
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98427
dc.description.abstractAs artificial intelligence (AI) has become an integral part of modern mobile networks, there is an increasing concern about vulnerabilities of intelligent machine learning (ML)-driven network components to adversarial effects. Due to the shared nature of wireless mediums, these components may be susceptible to sophisticated attacks that can manipulate the training and inference processes of the AI/ML models over the air. In our research, we focus on adversarial example attacks. During such an attack, an adversary aims to supply intelligently crafted input features to the target model so that it outputs a certain wrong result. This type of attack is the most realistic threat to the AI/ML models deployed in a 5G network since it takes place in the inference stage and therefore does not require having access to either the target model or the datasets during the training. In this study, we first provide experimental results for multiple use cases in order to demonstrate that such an attack approach can be carried out against various AI/ML-driven frameworks which might be present in the mobile network. After that, we discuss the defence mechanisms service providers may employ in order to protect the target network from adversarial effects.en
dc.format.extent366
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofArtificial Intelligence for Security : Enhancing Protection in a Changing World
dc.rightsIn Copyright
dc.titleOn Protection of the Next-Generation Mobile Networks Against Adversarial Examples
dc.typebookPart
dc.identifier.urnURN:NBN:fi:jyu-202411147269
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-031-57451-1
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange235-258
dc.type.versionacceptedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelembargoedAccessfi
dc.subject.ysotietojärjestelmät
dc.subject.ysoturvallisuus
dc.subject.ysotekoäly
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3927
jyx.subject.urihttp://www.yso.fi/onto/yso/p7349
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-57452-8_11
dc.type.okmA3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright