Näytä suppeat kuvailutiedot

dc.contributor.authorAravind Kulkarni, Anant
dc.contributor.authorHaghparast, Majid
dc.date.accessioned2024-11-14T08:38:25Z
dc.date.available2024-11-14T08:38:25Z
dc.date.issued2024
dc.identifier.citationAravind Kulkarni, A., & Haghparast, M. (2024). Identity Rules-Based Decomposition, Optimization, and Spin-Torque Modeling of Controlled V and V+ Gates for Quantum Full Adder. <i>IEEE Access</i>, <i>12</i>, 164911-164921. <a href="https://doi.org/10.1109/access.2024.3492915" target="_blank">https://doi.org/10.1109/access.2024.3492915</a>
dc.identifier.otherCONVID_243939994
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98418
dc.description.abstractThe quantum computing (QC) is emerging as one of the possibilities to replace the conventional computing to meet the complex computing challenges. Quantum gates are based on the quantum mechanical phenomena such as superposition and entanglement. Moreover, there are several ways to realize the reversible full adder representing one of the building blocks of the reversible computing. One of the ways to realize the reversible full adder is by using the controlled V and V+ gates. Spintronics is one of the quantum technologies to realize the reversible computing physically. Therefore, there is need of spin-torque based modelling of controlled V and V+ gates for the quantum computing applications in the reversible computing domain. In this paper, the controlled V and V+ gates are modelled for the spin-torque based qubit architecture through the optimization at elementary single-qubit rotation and two-qubit entanglement level. Therefore, the key innovation or unique contribution is to realize the controlled V and V+ gates by using the minimum number of the elementary operations (single- and two-qubits). Moreover, a quantum full adder (QFA) composed of controlled V and V+ gates, is optimized and realized with the spin-torque models of the controlled V and V+ gates to achieve fault tolerant fidelity. Therefore, the novelty is that the optimization of the controlled V and V+ gates for the reversible full adders is carried out by using the identity rules.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Access
dc.rightsCC BY 4.0
dc.subject.otherquantum gates
dc.subject.otherquantum circuits
dc.subject.otherspin-torque
dc.subject.otheroptimization
dc.titleIdentity Rules-Based Decomposition, Optimization, and Spin-Torque Modeling of Controlled V and V+ Gates for Quantum Full Adder
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202411147260
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange164911-164921
dc.relation.issn2169-3536
dc.relation.volume12
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.format.contentfulltext
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/access.2024.3492915
jyx.fundinginformationThe authors would like to thank the Institute of Technology, Nirma University, Ahmedabad, India, and the University of Jyväskylä, Finland, for supporting this work.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0