Show simple item record

dc.contributor.authorRaita-Hakola, Anna-Maria
dc.contributor.authorPölönen, Ilkka
dc.date.accessioned2024-11-12T07:09:38Z
dc.date.available2024-11-12T07:09:38Z
dc.date.issued2024
dc.identifier.citationRaita-Hakola, A.-M., & Pölönen, I. (2024). Firefront Forecasting in Boreal Forests : Machine Learning Approach to Predict Wildfire Propagation. <i>International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences</i>, <i>XLVIII</i>(3), 445-452. <a href="https://doi.org/10.5194/isprs-archives-xlviii-3-2024-445-2024" target="_blank">https://doi.org/10.5194/isprs-archives-xlviii-3-2024-445-2024</a>
dc.identifier.otherCONVID_243890369
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/98259
dc.description.abstractWildfires have become increasingly prevalent worldwide due to climate change, posing significant threats to human lives, property, and natural ecosystems. The rapid progression of wildfires necessitates predictive computational models to assist firefighters in effectively developing strategies to control firefronts. However, existing models often face challenges in computational complexity as the firefront expands. This study aims to develop a faster, more computationally efficient, deep-learning-based model for predicting wildfire spread. We hypothesise that firefront propagation can be modelled using stochastic cellular automata and that a deep-learning model can mimic this approach. With this in mind, we will first introduce our in-house stochastic cellular automata model, which is being validated with data from a known Finnish wildfire. After that, we propose a novel deep-learning model which uses the data generated by our cellular automata. The deep-learning-based model was based on Unet architecture, and it is capable of predicting firefront progression accurately and efficiently one time-step at a time. The model provided realistic simulations of firefronts with high computational efficiency, leaving future development needs to longer time series. One potential application of the developed model is in UAV-based real-time wildfire management systems.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherCopernicus GmbH
dc.relation.ispartofseriesInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.rightsCC BY 4.0
dc.subject.otherwildfire
dc.subject.otherfirefront
dc.subject.otherforest fire
dc.subject.othermachine learning
dc.subject.otherpropagation
dc.subject.otherstochastic cellular automata
dc.titleFirefront Forecasting in Boreal Forests : Machine Learning Approach to Predict Wildfire Propagation
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202411127106
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange445-452
dc.relation.issn1682-1750
dc.relation.numberinseries3
dc.relation.volumeXLVIII
dc.type.versionpublishedVersion
dc.rights.copyright© Author(s) 2024.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber348009
dc.subject.ysosoluautomaatit
dc.subject.ysokasvien lisäys
dc.subject.ysokoneoppiminen
dc.subject.ysomaastopalot
dc.subject.ysometsäpalot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p24342
jyx.subject.urihttp://www.yso.fi/onto/yso/p38039
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p8580
jyx.subject.urihttp://www.yso.fi/onto/yso/p11855
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.5194/isprs-archives-xlviii-3-2024-445-2024
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramMuut, SAfi
jyx.fundinginformationThis project has received funding from the European Union – NextGenerationEU instrument and is funded by the Academy of Finland under grant number 348009.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0