A Review of Tyler’s Shape Matrix and Its Extensions
Taskinen, S., Frahm, G., Nordhausen, K., & Oja, H. (2023). A Review of Tyler’s Shape Matrix and Its Extensions. In M. Yi, & K. Nordhausen (Eds.), Robust and Multivariate Statistical Methods : Festschrift in Honor of David E. Tyler (pp. 23-41). Springer. https://doi.org/10.1007/978-3-031-22687-8_2
Päivämäärä
2023Tekijänoikeudet
© 2023 the Authors
In a seminal paper, Tyler (1987a) suggests an M-estimator for shape, which is now known as Tyler’s shape matrix. Tyler’s shape matrix is increasingly popular due to its nice statistical properties. It is distribution free within the class of generalized elliptical distributions. Further, under very mild regularity conditions, it is consistent and asymptotically normally distributed after the usual standardization. Tyler’s shape matrix is still the subject of active research, e.g., in the signal processing literature, which discusses structured and regularized shape matrices. In this article, we review Tyler’s original shape matrix and some recent developments.
Julkaisija
SpringerEmojulkaisun ISBN
978-3-031-22686-1Kuuluu julkaisuun
Robust and Multivariate Statistical Methods : Festschrift in Honor of David E. TylerAsiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/182971282
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Time-varying source separation by joint diagnolization on autocovariances
Pan, Yan (2020)Sokealla signaalinerottelulla (Blind Source Separation, BSS) pyritään erottelemaan todelliset signaalit havaituista signaaleista, kun ennakkotietoja sekoitusmatriisista ja todellisista signaaleista on vain vähän saatavilla. ... -
Approximating symmetrized estimators of scatter via balanced incomplete U-statistics
Dümbgen, Lutz; Nordhausen, Klaus (Springer, 2024)We derive limiting distributions of symmetrized estimators of scatter. Instead of considering all n(n−1)/2 pairs of the n observations, we only use nd suitably chosen pairs, where d≥1 is substantially smaller than n. It ... -
Viivasegmenttiprosessin tunnusten estimointi
Niilo-Rämä, Mikko (2011)Tutkielmassa käsitellään tasossa olevan viivasegmenttiprosessin kahta ensimmäisen kertaluvun tunnusta: intensiteettiä ja pituusjakauman odotusarvoa. Uusina menetelminä esitellään intensiteetin estimoinnissa kahden ... -
Contrasting Identifying Assumptions of Average Causal Effects : Robustness and Semiparametric Efficiency
Gorbach, Tetiana; de Luna, Xavier; Karvanen, Juha; Waernbaum, Ingeborg (JMLR, 2023)Semiparametric inference on average causal effects from observational data is based on assumptions yielding identification of the effects. In practice, several distinct identifying assumptions may be plausible; an analyst ... -
Complementary Judgment Matrix Method with Imprecise Information for Multicriteria Decision-Making
Wang, Haichao; Lahdelma, Risto; Salminen, Pekka (Hindawi Publishing Corporation, 2018)The complementary judgment matrix (CJM) method is an MCDA (multicriteria decision aiding) method based on pairwise comparisons. As in AHP, the decision-maker (DM) can specify his/her preferences using pairwise comparisons, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.