Näytä suppeat kuvailutiedot

dc.contributor.authorPihlajamäki, Antti
dc.contributor.authorMatus, María Francisca
dc.contributor.authorMalola, Sami
dc.contributor.authorHäkkinen, Hannu
dc.date.accessioned2024-10-23T04:50:46Z
dc.date.available2024-10-23T04:50:46Z
dc.date.issued2024
dc.identifier.citationPihlajamäki, A., Matus, M. F., Malola, S., & Häkkinen, H. (2024). GraphBNC : Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins. <i>Advanced Materials</i>, <i>Early View</i>. <a href="https://doi.org/10.1002/adma.202407046" target="_blank">https://doi.org/10.1002/adma.202407046</a>
dc.identifier.otherCONVID_243210405
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97600
dc.description.abstractHybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing such applications relies critically on understanding the dynamical properties of the nano–bio interface. This work introduces and validates a strategy to predict atom-scale interactions between water-soluble gold nanoclusters (AuNCs) and a set of blood proteins (albumin, apolipoprotein, immunoglobulin, and fibrinogen). Graph theory and neural networks are utilized to predict the strengths of interactions in AuNC–protein complexes on a coarse-grained level, which are then optimized in Monte Carlo-based structure search and refined to atomic-scale structures. The training data is based on extensive molecular dynamics (MD) simulations of AuNC–protein complexes, and the validating MD simulations show the robustness of the predictions. This strategy can be generalized to any complexes of inorganic nanostructures and biomolecules provided that one generates enough data about the interactions, and the bioactive parts of the nanostructure can be coarse-grained rationally.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley-VCH Verlag
dc.relation.ispartofseriesAdvanced Materials
dc.rightsCC BY 4.0
dc.subject.othergraphs
dc.subject.othermachine learning
dc.subject.othermetal nanoclusters
dc.subject.othermolecular dynamics
dc.subject.othernano–bio interface
dc.titleGraphBNC : Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202410236459
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0935-9648
dc.relation.volumeEarly View
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber355083
dc.relation.grantnumber351582
dc.subject.ysomolekyylidynamiikka
dc.subject.ysokoneoppiminen
dc.subject.ysonanomateriaalit
dc.subject.ysobiomolekyylit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p22976
jyx.subject.urihttp://www.yso.fi/onto/yso/p27773
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1002/adma.202407046
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramMuut, SAfi
jyx.fundinginformationA.P. and M.F.M. contributed equally to this work. This work was sup-ported by the Academy of Finland through grants 351582 and 355083 in the EuroHPC Research Programme. The machine learning model was developed at the FCCI node in the University of Jyväskylä (persistent identifier: urn:nbn:fi:research-infras-2016072533). The training and validation molecular dynamics simulations were performed in the LUMI supercomputer, owned by the EuroHPC Joint Undertaking and hosted by CSC (Finland), through the Finnish Grand Challenge Project BIOINT.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0