GraphBNC : Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins
dc.contributor.author | Pihlajamäki, Antti | |
dc.contributor.author | Matus, María Francisca | |
dc.contributor.author | Malola, Sami | |
dc.contributor.author | Häkkinen, Hannu | |
dc.date.accessioned | 2024-10-23T04:50:46Z | |
dc.date.available | 2024-10-23T04:50:46Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Pihlajamäki, A., Matus, M. F., Malola, S., & Häkkinen, H. (2024). GraphBNC : Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins. <i>Advanced Materials</i>, <i>Early View</i>. <a href="https://doi.org/10.1002/adma.202407046" target="_blank">https://doi.org/10.1002/adma.202407046</a> | |
dc.identifier.other | CONVID_243210405 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/97600 | |
dc.description.abstract | Hybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing such applications relies critically on understanding the dynamical properties of the nano–bio interface. This work introduces and validates a strategy to predict atom-scale interactions between water-soluble gold nanoclusters (AuNCs) and a set of blood proteins (albumin, apolipoprotein, immunoglobulin, and fibrinogen). Graph theory and neural networks are utilized to predict the strengths of interactions in AuNC–protein complexes on a coarse-grained level, which are then optimized in Monte Carlo-based structure search and refined to atomic-scale structures. The training data is based on extensive molecular dynamics (MD) simulations of AuNC–protein complexes, and the validating MD simulations show the robustness of the predictions. This strategy can be generalized to any complexes of inorganic nanostructures and biomolecules provided that one generates enough data about the interactions, and the bioactive parts of the nanostructure can be coarse-grained rationally. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Wiley-VCH Verlag | |
dc.relation.ispartofseries | Advanced Materials | |
dc.rights | CC BY 4.0 | |
dc.subject.other | graphs | |
dc.subject.other | machine learning | |
dc.subject.other | metal nanoclusters | |
dc.subject.other | molecular dynamics | |
dc.subject.other | nano–bio interface | |
dc.title | GraphBNC : Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202410236459 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0935-9648 | |
dc.relation.volume | Early View | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 355083 | |
dc.relation.grantnumber | 351582 | |
dc.subject.yso | molekyylidynamiikka | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | nanomateriaalit | |
dc.subject.yso | biomolekyylit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29332 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p22976 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27773 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1002/adma.202407046 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Others, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Muut, SA | fi |
jyx.fundinginformation | A.P. and M.F.M. contributed equally to this work. This work was sup-ported by the Academy of Finland through grants 351582 and 355083 in the EuroHPC Research Programme. The machine learning model was developed at the FCCI node in the University of Jyväskylä (persistent identifier: urn:nbn:fi:research-infras-2016072533). The training and validation molecular dynamics simulations were performed in the LUMI supercomputer, owned by the EuroHPC Joint Undertaking and hosted by CSC (Finland), through the Finnish Grand Challenge Project BIOINT. | |
dc.type.okm | A1 |