dc.contributor.author | Vihola, Matti | |
dc.contributor.editor | Balakrishnan, N. | |
dc.contributor.editor | Colton, T. | |
dc.contributor.editor | Everitt, B. | |
dc.contributor.editor | Piegorsch, W. | |
dc.contributor.editor | Ruggeri, F. | |
dc.contributor.editor | Teugels, J. L. | |
dc.date.accessioned | 2024-10-16T09:23:37Z | |
dc.date.available | 2024-10-16T09:23:37Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Vihola, M. (2020). Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), <i>Wiley StatsRef : Statistics Reference Online</i> (pp. 1-12). John Wiley & Sons. <a href="https://doi.org/10.1002/9781118445112.stat08286" target="_blank">https://doi.org/10.1002/9781118445112.stat08286</a> | |
dc.identifier.other | CONVID_47055409 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/97466 | |
dc.description.abstract | Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a practical introduction to selected set of adaptive MCMC methods and to suggest guidelines for choosing appropriate methods for certain classes of models. We consider simple unimodal targets with random-walk-based methods, multimodal target distributions with parallel tempering, and Bayesian hidden Markov models using particle MCMC. The section is complemented by an easy-to-use open-source implementation of the presented methods in Julia, with examples. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | John Wiley & Sons | |
dc.relation.ispartof | Wiley StatsRef : Statistics Reference Online | |
dc.rights | In Copyright | |
dc.title | Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo | |
dc.type | book part | |
dc.identifier.urn | URN:NBN:fi:jyu-202410166332 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/BookItem | |
dc.relation.isbn | 978-1-118-44511-2 | |
dc.type.coar | http://purl.org/coar/resource_type/c_3248 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1-12 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2020 John Wiley & Sons, Ltd. All rights reserved. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | bookPart | |
dc.relation.grantnumber | 274740 | |
dc.relation.grantnumber | 312605 | |
dc.relation.grantnumber | 315619 | |
dc.subject.yso | menetelmät | |
dc.subject.yso | Markovin ketjut | |
dc.subject.yso | bayesilainen menetelmä | |
dc.subject.yso | Monte Carlo -menetelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1913 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13075 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17803 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6361 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1002/9781118445112.stat08286 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | Suomen Akatemia 274740, 312605 ja 315619. | |
dc.type.okm | A3 | |