Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo
Vihola, M. (2020). Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef : Statistics Reference Online (pp. 1-12). John Wiley & Sons. https://doi.org/10.1002/9781118445112.stat08286
Tekijät
Toimittajat
Päivämäärä
2020Tekijänoikeudet
© 2020 John Wiley & Sons, Ltd. All rights reserved.
Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a practical introduction to selected set of adaptive MCMC methods and to suggest guidelines for choosing appropriate methods for certain classes of models. We consider simple unimodal targets with random-walk-based methods, multimodal target distributions with parallel tempering, and Bayesian hidden Markov models using particle MCMC. The section is complemented by an easy-to-use open-source implementation of the presented methods in Julia, with examples.
Julkaisija
John Wiley & SonsEmojulkaisun ISBN
978-1-118-44511-2Kuuluu julkaisuun
Wiley StatsRef : Statistics Reference OnlineJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47055409
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SA; Akatemiatutkijan tutkimuskulut, SA; Akatemiahanke, SALisätietoja rahoituksesta
Suomen Akatemia 274740, 312605 ja 315619.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ... -
Efficient Bayesian generalized linear models with time-varying coefficients : The walker package in R
Helske, Jouni (Elsevier BV, 2022)The R package walker extends standard Bayesian general linear models to the case where the effects of the explanatory variables can vary in time. This allows, for example, to model the effects of interventions such as ... -
On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction
Vihola, Matti; Franks, Jordan (Oxford University Press, 2020)Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation ... -
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
Vihola, Matti; Helske, Jouni; Franks, Jordan (Wiley-Blackwell, 2020)We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the ... -
Estimating Causal Effects from Panel Data with Dynamic Multivariate Panel Models
Helske, Jouni; Tikka, Santtu (Elsevier, 2024)Panel data are ubiquitous in scientific fields such as social sciences. Various modeling approaches have been presented for observational causal inference based on such data. Existing approaches typically impose restrictive ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.