Show simple item record

dc.contributor.authorVihola, Matti
dc.contributor.editorBalakrishnan, N.
dc.contributor.editorColton, T.
dc.contributor.editorEveritt, B.
dc.contributor.editorPiegorsch, W.
dc.contributor.editorRuggeri, F.
dc.contributor.editorTeugels, J. L.
dc.date.accessioned2024-10-16T09:23:37Z
dc.date.available2024-10-16T09:23:37Z
dc.date.issued2020
dc.identifier.citationVihola, M. (2020). Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo. In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), <i>Wiley StatsRef : Statistics Reference Online</i> (pp. 1-12). John Wiley & Sons. <a href="https://doi.org/10.1002/9781118445112.stat08286" target="_blank">https://doi.org/10.1002/9781118445112.stat08286</a>
dc.identifier.otherCONVID_47055409
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97466
dc.description.abstractAdaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a practical introduction to selected set of adaptive MCMC methods and to suggest guidelines for choosing appropriate methods for certain classes of models. We consider simple unimodal targets with random-walk-based methods, multimodal target distributions with parallel tempering, and Bayesian hidden Markov models using particle MCMC. The section is complemented by an easy-to-use open-source implementation of the presented methods in Julia, with examples.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.ispartofWiley StatsRef : Statistics Reference Online
dc.rightsIn Copyright
dc.titleErgonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-202410166332
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-1-118-44511-2
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-12
dc.type.versionacceptedVersion
dc.rights.copyright© 2020 John Wiley & Sons, Ltd. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.type.publicationbookPart
dc.relation.grantnumber274740
dc.relation.grantnumber312605
dc.relation.grantnumber315619
dc.subject.ysomenetelmät
dc.subject.ysoMarkovin ketjut
dc.subject.ysobayesilainen menetelmä
dc.subject.ysoMonte Carlo -menetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p1913
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1002/9781118445112.stat08286
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationSuomen Akatemia 274740, 312605 ja 315619.
dc.type.okmA3


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright