Show simple item record

dc.contributor.authorKhair, Ra'ad M.
dc.contributor.authorSukanen, Maria
dc.contributor.authorFinni, Taija
dc.date.accessioned2024-09-19T05:32:32Z
dc.date.available2024-09-19T05:32:32Z
dc.date.issued2024
dc.identifier.citationKhair, R. M., Sukanen, M., & Finni, T. (2024). Achilles Tendon Stiffness : Influence of Measurement Methodology. <i>Ultrasound in Medicine and Biology</i>, <i>50</i>(10), 1522-1529. <a href="https://doi.org/10.1016/j.ultrasmedbio.2024.06.005" target="_blank">https://doi.org/10.1016/j.ultrasmedbio.2024.06.005</a>
dc.identifier.otherCONVID_233269804
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97095
dc.description.abstractObjective Mechanical stiffness derived from force-elongation curves is fundamentally different from shear wave (SW) elastography-based tissue properties. We compared these techniques, with a total of five methods of assessing Achilles tendon (AT) stiffness. Methods Seventeen participants (12 male and 5 female) with unilateral AT rupture performed submaximal contractions at 30% and 10% maximal isometric contraction torque of the un-injured limb. SW velocity was acquired at rest. Force-elongation curves were assessed from the free AT and the medial gastrocnemius (MG) tendon. Mechanical stiffness was determined near the end of the linear region of the force-elongation curve and from the toe region. Bivariate correlations between mechanical stiffness and SW velocity, as well as pairwise t-tests between limbs, were computed. Results In the injured limb, SW velocity correlated with MG tendon and free AT toe-region stiffness during 10% (r = 0.59, p = 0.020 and r = 0.60, p = 0.011, respectively) and 30% of submaximal contractions (r = 0.56, p = 0.018 and r = 0.67, p = 0.004, respectively). The un-injured limb showed no associations. In both limbs pooled together, SW velocity correlated with MG tendon toe-region stiffness in 30% of submaximal contractions (r = 0.43, p = 0.012). Free tendon mechanical stiffness was lower in the injured limb, with a mean difference of 148.5 Nmm⁻¹ (95% CI: 35.6–261.3, p = 0.013), while SW velocity was higher in the injured limb (1.67 m × s⁻¹, 95% CI; -2.4 to -0.9, p < 0.001). Conclusion SW elastography may reflect AT viscoelastic properties at the initial slope of the force-length curve with strains <1% but cannot offer insight into AT mechanics at higher loads. Extended toe regions in the injured limb could have caused the association between mechanical stiffness and SW-based stiffness.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesUltrasound in Medicine and Biology
dc.rightsCC BY-NC-ND 4.0
dc.subject.othershear wave elastography
dc.subject.othertendon rupture
dc.subject.otherelasticity
dc.subject.othermechanical properties
dc.subject.otherultrasound imaging
dc.titleAchilles Tendon Stiffness : Influence of Measurement Methodology
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202409195970
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1522-1529
dc.relation.issn0301-5629
dc.relation.numberinseries10
dc.relation.volume50
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Author(s). Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber323168
dc.relation.grantnumber355678
dc.subject.ysobiomekaniikka
dc.subject.ysojänteet
dc.subject.ysokimmoisuus
dc.subject.ysotutkimusmenetelmät
dc.subject.ysojäykkyys
dc.subject.ysokantajänne
dc.subject.ysovertaileva tutkimus
dc.subject.ysoultraäänitutkimus
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p20292
jyx.subject.urihttp://www.yso.fi/onto/yso/p11499
jyx.subject.urihttp://www.yso.fi/onto/yso/p15864
jyx.subject.urihttp://www.yso.fi/onto/yso/p415
jyx.subject.urihttp://www.yso.fi/onto/yso/p20176
jyx.subject.urihttp://www.yso.fi/onto/yso/p18959
jyx.subject.urihttp://www.yso.fi/onto/yso/p1772
jyx.subject.urihttp://www.yso.fi/onto/yso/p19405
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.ultrasmedbio.2024.06.005
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThis work was supported by Academy of Finland-funded research projects UNderstanding REStoration of AchillesTendon function after rupture (UNRESAT; grant #323168/Taija Finni) and Development of novel methods for creation of a new subject-specific view of Achilles tendon structure and loading in health and disease (ACHILLES; grant #355678/Taija Finni).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0