Näytä suppeat kuvailutiedot

dc.contributor.authorKarppinen, Santeri
dc.contributor.authorSingh, Sumeetpal S.
dc.contributor.authorVihola, Matti
dc.date.accessioned2024-08-28T12:02:41Z
dc.date.available2024-08-28T12:02:41Z
dc.date.issued2024
dc.identifier.citationKarppinen, S., Singh, S. S., & Vihola, M. (2024). Conditional particle filters with bridge backward sampling. <i>Journal of Computational and Graphical Statistics</i>, <i>33</i>(2), 364-378. <a href="https://doi.org/10.1080/10618600.2023.2231514" target="_blank">https://doi.org/10.1080/10618600.2023.2231514</a>
dc.identifier.otherCONVID_183970814
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96812
dc.description.abstractConditional particle filters (CPFs) with backward/ancestor sampling are powerful methods for sampling from the posterior distribution of the latent states of a dynamic model such as a hidden Markov model. However, the performance of these methods deteriorates with models involving weakly informative observations and/or slowly mixing dynamics. Both of these complications arise when sampling finely time-discretised continuous-time path integral models, but can occur with hidden Markov models too. Multinomial resampling, which is commonly employed with CPFs, resamples excessively for weakly informative observations and thereby introduces extra variance. Furthermore, slowly mixing dynamics render the backward/ancestor sampling steps ineffective, leading to degeneracy issues. We detail two conditional resampling strategies suitable for the weakly informative regime: the so-called ‘killing’ resampling and the systematic resampling with mean partial order. To avoid the degeneracy issues, we introduce a generalisation of the CPF with backward sampling that involves auxiliary ‘bridging’ CPF steps that are parameterised by a blocking sequence. We present practical tuning strategies for choosing an appropriate blocking. Our experiments demonstrate that the CPF with a suitable resampling and the developed ‘bridge backward sampling’ can lead to substantial efficiency gains in the weakly informative and slow mixing regime. Supplementary materials for this article are available online.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor & Francis
dc.relation.ispartofseriesJournal of Computational and Graphical Statistics
dc.rightsCC BY 4.0
dc.subject.otherFeynman-Kac model
dc.subject.otherhidden Markov model
dc.subject.otherparticle Markov chain Monte Carlo
dc.subject.otherpath integral
dc.subject.othersequential Monte Carlo
dc.subject.othersmoothing
dc.titleConditional particle filters with bridge backward sampling
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202408285697
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange364-378
dc.relation.issn1061-8600
dc.relation.numberinseries2
dc.relation.volume33
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber315619
dc.relation.grantnumber346311
dc.subject.ysoMonte Carlo -menetelmät
dc.subject.ysoMarkovin ketjut
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1080/10618600.2023.2231514
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramCentre of Excellence, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramHuippuyksikkörahoitus, SAfi
jyx.fundinginformationSK and MV were supported by the Academy of Finland grants 315619 and 346311.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0