Coupled conditional backward sampling particle filter
Lee, A., Singh, S. S., & Vihola, M. (2020). Coupled conditional backward sampling particle filter. Annals of Statistics, 48(5), 3066-3089. https://doi.org/10.1214/19-AOS1922
Julkaistu sarjassa
Annals of StatisticsPäivämäärä
2020Tekijänoikeudet
© Institute of Mathematical Statistics, 2020
The conditional particle filter (CPF) is a promising algorithm for general hidden Markov model smoothing. Empirical evidence suggests that the variant of CPF with backward sampling (CBPF) performs well even with long time series. Previous theoretical results have not been able to demonstrate the improvement brought by backward sampling, whereas we provide rates showing that CBPF can remain effective with a fixed number of particles independent of the time horizon. Our result is based on analysis of a new coupling of two CBPFs, the coupled conditional backward sampling particle filter (CCBPF). We show that CCBPF has good stability properties in the sense that with fixed number of particles, the coupling time in terms of iterations increases only linearly with respect to the time horizon under a general (strong mixing) condition. The CCBPF is useful not only as a theoretical tool, but also as a practical method that allows for unbiased estimation of smoothing expectations, following the recent developments by Jacob, Lindsten and Schon (2020). Unbiased estimation has many advantages, such as enabling the construction of asymptotically exact confidence intervals and straightforward parallelisation.
...
Julkaisija
Institute of Mathematical StatisticsISSN Hae Julkaisufoorumista
0090-5364Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/42303180
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkijan tutkimuskulut, SA; Akatemiatutkija, SALisätietoja rahoituksesta
This work wassupported by EPSRC grant numbers EP/K032208/1, EP/R014604/1 and EP/R034710/1, and by the Alan Turing Institute under the EPSRC grant EP/N510129/1. MV was supported byAcademy of Finland grants 274740, 284513, 312605 and 315619. The authors wish to ac-knowledge CSC, IT Center for Science, Finland, for computational resources.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On resampling schemes for particle filters with weakly informative observations
Chopin, Nicolas; Singh, Sumeetpal S.; Soto, Tomás; Vihola, Matti (Institute of Mathematical Statistics, 2022)We consider particle filters with weakly informative observations (or ‘potentials’) relative to the latent state dynamics. The particular focus of this work is on particle filters to approximate time-discretisations of ... -
Conditional particle filters with bridge backward sampling
Karppinen, Santeri; Singh, Sumeetpal S.; Vihola, Matti (Taylor & Francis, 2024)Conditional particle filters (CPFs) with backward/ancestor sampling are powerful methods for sampling from the posterior distribution of the latent states of a dynamic model such as a hidden Markov model. However, the ... -
Conditional particle filters with diffuse initial distributions
Karppinen, Santeri; Vihola, Matti (Springer, 2021)Conditional particle filters (CPFs) are powerful smoothing algorithms for general nonlinear/non-Gaussian hidden Markov models. However, CPFs can be inefficient or difficult to apply with diffuse initial distributions, which ... -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ... -
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
Franks, Jordan; Vihola, Matti (Elsevier, 2020)We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.