Näytä suppeat kuvailutiedot

dc.contributor.authorMcCandler, Caitlin A.
dc.contributor.authorPihlajamäki, Antti
dc.contributor.authorMalola, Sami
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorPersson, Kristin A.
dc.date.accessioned2024-07-31T06:09:19Z
dc.date.available2024-07-31T06:09:19Z
dc.date.issued2024
dc.identifier.citationMcCandler, C. A., Pihlajamäki, A., Malola, S., Häkkinen, H., & Persson, K. A. (2024). Gold–Thiolate Nanocluster Dynamics and Intercluster Reactions Enabled by a Machine Learned Interatomic Potential. <i>Acs Nano</i>, <i>18</i>(20), 19014-19023. <a href="https://doi.org/10.1021/acsnano.4c03094" target="_blank">https://doi.org/10.1021/acsnano.4c03094</a>
dc.identifier.otherCONVID_221053207
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96441
dc.description.abstractMonolayer protected metal clusters comprise a rich class of molecular systems and are promising candidate materials for a variety of applications. While a growing number of protected nanoclusters have been synthesized and characterized in crystalline forms, their dynamical behavior in solution, including prenucleation cluster formation, is not well understood due to limitations both in characterization and first-principles modeling techniques. Recent advancements in machine-learned interatomic potentials are rapidly enabling the study of complex interactions such as dynamical behavior and reactivity on the nanoscale. Here, we develop an Au–S–C–H atomic cluster expansion (ACE) interatomic potential for efficient and accurate molecular dynamics simulations of thiolate-protected gold nanoclusters (Aun(SCH3)m). Trained on more than 30,000 density functional theory calculations of gold nanoclusters, the interatomic potential exhibits ab initio level accuracy in energies and forces and replicates nanocluster dynamics including thermal vibration and chiral inversion. Long dynamics simulations (up to 0.1 μs time scale) reveal a mechanism explaining the thermal instability of neutral Au25(SR)18 clusters. Specifically, we observe multiple stages of isomerization of the Au25(SR)18 cluster, including a chiral isomer. Additionally, we simulate coalescence of two Au25(SR)18 clusters and observe series of clusters where the formation mechanisms are critically mediated by ligand exchange in the form of [Au–S]n rings.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesAcs Nano
dc.rightsCC BY 4.0
dc.subject.otherNanocluster
dc.subject.otherInteratomic Potential
dc.subject.otherMolecular Dynamics
dc.subject.otherIsomers
dc.subject.otherCoalescence
dc.subject.otherGold
dc.titleGold–Thiolate Nanocluster Dynamics and Intercluster Reactions Enabled by a Machine Learned Interatomic Potential
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202407315263
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange19014-19023
dc.relation.issn1936-0851
dc.relation.numberinseries20
dc.relation.volume18
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber351582
dc.subject.ysokulta
dc.subject.ysoklusterit
dc.subject.ysomolekyylidynamiikka
dc.subject.ysoisomeria
dc.subject.ysonanotieteet
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19016
jyx.subject.urihttp://www.yso.fi/onto/yso/p18755
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p10129
jyx.subject.urihttp://www.yso.fi/onto/yso/p6228
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://materialsproject-contribs.s3.amazonaws.com/index.html#ausch_potential/
dc.relation.doi10.1021/acsnano.4c03094
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramOthers, AoFen
jyx.fundingprogramMuut, SAfi
jyx.fundinginformationC.A.M. acknowledges the National Defense Science and Engineering Graduate (NDSEG) fellowship and the Kavli ENSI Graduate Student Fellowship for financial support. The research at UC Berkeley/LBNL used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award BES-ERCAP0024004. The research at University of Jyväskylä was supported by the Academy of Finland (grant 351582) and the Finnish national supercomputing center CSC.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0