Näytä suppeat kuvailutiedot

dc.contributor.authorHelske, Jouni
dc.contributor.authorHelske, Satu
dc.contributor.authorSaqr, Mohammed
dc.contributor.authorLópez-Pernas, Sonsoles
dc.contributor.authorMurphy, Keefe
dc.contributor.editorSaqr, Mohammed
dc.contributor.editorLópez-Pernas,Sonsoles
dc.date.accessioned2024-07-12T08:32:53Z
dc.date.available2024-07-12T08:32:53Z
dc.date.issued2024
dc.identifier.citationHelske, J., Helske, S., Saqr, M., López-Pernas, S., & Murphy, K. (2024). A Modern Approach to Transition Analysis and Process Mining with Markov Models in Education. In M. Saqr, & S. López-Pernas (Eds.), <i>Learning Analytics Methods and Tutorials : A Practical Guide Using R</i> (pp. 381-427). Springer. <a href="https://doi.org/10.1007/978-3-031-54464-4_12" target="_blank">https://doi.org/10.1007/978-3-031-54464-4_12</a>
dc.identifier.otherCONVID_221055714
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96415
dc.description.abstractThis chapter presents an introduction to Markovian modelling for the analysis of sequence data. Contrary to the deterministic approach seen in the previous sequence analysis chapters, Markovian models are probabilistic models, focusing on the transitions between states instead of studying sequences as a whole. The chapter provides an introduction to this method and differentiates between its most common variations: first-order Markov models, hidden Markov models, mixture Markov models, and mixture hidden Markov models. In addition to a thorough explanation and contextualisation within the existing literature, the chapter provides a step-by-step tutorial on how to implement each type of Markovian model using the R package seqHMM. The chapter also provides a complete guide to performing stochastic process mining with Markovian models as well as plotting, comparing and clustering different process models.en
dc.format.extent736
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofLearning Analytics Methods and Tutorials : A Practical Guide Using R
dc.rightsCC BY 4.0
dc.subject.otherMarkovin malli
dc.titleA Modern Approach to Transition Analysis and Process Mining with Markov Models in Education
dc.typebook part
dc.identifier.urnURN:NBN:fi:jyu-202407125241
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/BookItem
dc.relation.isbn978-3-031-54463-7
dc.type.coarhttp://purl.org/coar/resource_type/c_3248
dc.description.reviewstatuspeerReviewed
dc.format.pagerange381-427
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.type.publicationbookPart
dc.subject.ysostokastiset prosessit
dc.subject.ysosekvenssianalyysi
dc.subject.ysoprosessilouhinta
dc.subject.ysotodennäköisyyslaskenta
dc.subject.ysomallintaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p11400
jyx.subject.urihttp://www.yso.fi/onto/yso/p23429
jyx.subject.urihttp://www.yso.fi/onto/yso/p39672
jyx.subject.urihttp://www.yso.fi/onto/yso/p4746
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/978-3-031-54464-4_12
dc.type.okmA3


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0