Hölder regularity for stochastic processes with bounded and measurable increments
Arroyo, Á., Blanc, P., & Parviainen, M. (2023). Hölder regularity for stochastic processes with bounded and measurable increments. Annales de l’Institut Henri Poincaré : Analyse Non Linéaire, 40(1), 215-258. https://doi.org/10.4171/aihpc/41
Date
2023Discipline
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Copyright
© Association Publications de l'Institut Henri Poincaré Paris
We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov–Safonov regularity result in PDEs. However, the discrete step size ε has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.
Publisher
European Mathematical Society - EMS - Publishing House GmbHISSN Search the Publication Forum
0294-1449Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/148889823
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
A. A. is partially supported by a UniGe starting grant “curiosity driven” and grants MTM2017-85666-P, 2017 SGR 395. B. P. and M. P. are partially supported by the Academy of Finland project #298641.License
Related items
Showing items with similar title or keywords.
-
Asymptotic Hölder regularity for the ellipsoid process
Arroyo, Ángel; Parviainen, Mikko (EDP Sciences, 2020)We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the ... -
Uniform measure density condition and game regularity for tug-of-war games
Heino, Joonas (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2018)We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for ... -
Regularity for nonlinear stochastic games
Luiro, Hannes; Parviainen, Mikko (Elsevier, 2018)We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and ... -
Gradient and Lipschitz Estimates for Tug-of-War Type Games
Attouchi, Amal; Luiro, Hannes; Parviainen, Mikko (Society for Industrial and Applied Mathematics, 2021)We define a random step size tug-of-war game and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the ... -
On the local and global regularity of tug-of-war games
Heino, Joonas (University of Jyväskylä, 2018)This thesis studies local and global regularity properties of a stochastic two-player zero-sum game called tug-of-war. In particular, we study value functions of the game locally as well as globally, that is, close to ...