Hölder regularity for stochastic processes with bounded and measurable increments
Arroyo, Á., Blanc, P., & Parviainen, M. (2023). Hölder regularity for stochastic processes with bounded and measurable increments. Annales de l’Institut Henri Poincaré : Analyse Non Linéaire, 40(1), 215-258. https://doi.org/10.4171/aihpc/41
Julkaistu sarjassa
Annales de l’Institut Henri Poincaré : Analyse Non LinéairePäivämäärä
2023Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© Association Publications de l'Institut Henri Poincaré Paris
We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions to discretized PDEs. The result, which is also generalized to functions satisfying Pucci-type inequalities for discrete extremal operators, is a counterpart to the Krylov–Safonov regularity result in PDEs. However, the discrete step size ε has some crucial effects compared to the PDE setting. The proof combines analytic and probabilistic arguments.
Julkaisija
European Mathematical Society - EMS - Publishing House GmbHISSN Hae Julkaisufoorumista
0294-1449Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/148889823
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
A. A. is partially supported by a UniGe starting grant “curiosity driven” and grants MTM2017-85666-P, 2017 SGR 395. B. P. and M. P. are partially supported by the Academy of Finland project #298641.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Asymptotic Hölder regularity for the ellipsoid process
Arroyo, Ángel; Parviainen, Mikko (EDP Sciences, 2020)We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the ... -
Uniform measure density condition and game regularity for tug-of-war games
Heino, Joonas (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2018)We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for ... -
A systematic approach on the second order regularity of solutions to the general parabolic p-Laplace equation
Feng, Yawen; Parviainen, Mikko; Sarsa, Saara (Springer, 2023)We study a general form of a degenerate or singular parabolic equation ut−|Du|γ(Δu+(p−2)ΔN∞u)=0 that generalizes both the standard parabolic p-Laplace equation and the normalized version that arises from stochastic game ... -
Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities
Arroyo Garcia, Angel; Luiro, Hannes; Parviainen, Mikko; Ruosteenoja, Eero (Springer, 2020)We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in Ω ⊂ ℝn. The method of the proof is based on a game-theoretic idea to estimate the value of a related ... -
Regularity properties of tug-of-war games and normalized equations
Ruosteenoja, Eero (University of Jyväskylä, 2017)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.