Recovery of rare earth elements from mining wastewater with aminomethylphosphonic acid functionalized 3D-printed filters
Virtanen, E. J., Kukkonen, E., Yliharju, J., Tuomisto, M., Frimodig, J., Kinnunen, K., Lahtinen, E., Hänninen, M. M., Väisänen, A., Haukka, M., & Moilanen, J. O. (2025). Recovery of rare earth elements from mining wastewater with aminomethylphosphonic acid functionalized 3D-printed filters. Separation and Purification Technology, 353, Article 128599. https://doi.org/10.1016/j.seppur.2024.128599
Julkaistu sarjassa
Separation and Purification TechnologyTekijät
Päivämäärä
2025Tekijänoikeudet
© 2024 The Authors. Published by Elsevier B.V.
Herein we report the use of nylon-12-based 3D-printed filters incorporating α-aminomethylphosphonic acid as an active additive for the recovery of Y, Nd, and Dy from the mining waste solution containing Al, K, Ca, Sc, Fe, Co, Cu, Zn, Y, Nd, Dy, and U. Nylon-12 was chosen for the polymer matrix of the filter due to its inactivity towards the studied metals. The micrometer-level structure of the filters was studied with a scanning helium ion microscope and X-ray tomography to reveal the porosity, pore size, and active additive distribution in the filters. Furthermore, FTIR spectroscopy was used to analyze the compositional changes in the 3D-printed filters after the printing and adsorption processes. Adsorption of the metals was studied at a pH range of 1–4, and the following adsorption trend Sc > Fe > U > Y, Nd, Dy > Al, Cu, Zn > K, Ca, Co was observed in each of the studied pH values. The sequential recovery process for metals was studied at pH 2, and desorption of the metals from the filters was performed with 6 M HNO3. 100 % adsorption of REEs, Fe, and U was achieved during the recovery process, and on average, over 88 % of the adsorbed Y, Nd, and Dy were desorbed from the filters. In contrast to Y, Nd, and Dy, the desorption of Sc, Fe, and U was minimal (Fe and U) or negligible (Sc) with 6 M HNO3 due to their strong coordination to the active additive. Maximum adsorption capacities for Y, Nd, Dy, and U were determined by using linear Langmuir adsorption isotherm. The best maximum adsorption capacity was determined for Sc, Qmax = 0.51 mmol/g followed by U, Nd, Dy, and Y with capacities of 0.47, 0.24, 0.23, and 0.17 mmol/g, respectively. Overall, this study achieved a complete removal of Sc, Fe, and U from the simulated mining waste solution leaving a final eluate that mainly contained Y (320 μg), Nd (350 μg), Dy (330 μg), and Al (710 μg) demonstrating the applicability of the 3D-printed filters in the recovery of Y, Nd, and Dy from the multimetal solution.
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
1383-5866Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/220966557
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SA; Akatemiahanke, SALisätietoja rahoituksesta
We thank the University of Jyväskylä, the Research Council of Finland (projects 315829 and 338733), the Technology Industries of Finland Centennial Foundation and Jane and Aatos Erkko Foundation for their financial support.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Porous 3D Printed Scavenger Filters for Selective Recovery of Precious Metals from Electronic Waste
Lahtinen, Elmeri; Hänninen, Mikko M.; Kinnunen, Kimmo; Tuononen, Heikki; Väisänen, Ari; Rissanen, Kari; Haukka, Matti (Wiley, 2018)Selective laser sintering (SLS) 3D printing is used to fabricate highly macroporous ion scavenger filters for recovery of Pd and Pt from electronic waste. The scavengers are printed by using a mixture of polypropylene with ... -
Gold Nanoparticles on 3D-Printed Filters : From Waste to Catalysts
Lahtinen, Elmeri; Kukkonen, Esa; Kinnunen, Virva; Lahtinen, Manu; Kinnunen, Kimmo; Suvanto, Sari; Väisänen, Ari; Haukka, Matti (American Chemical Society, 2019)Three-dimensionally printed solid but highly porous polyamide-12 (PA12) plate-like filters were used as selective adsorbents for capturing tetrachloroaurate from acidic solutions and leachates to prepare PA12–Au composite ... -
Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusion
Maurel, Alexis; Haukka, Matti; MacDonald, Eric; Kivijärvi, Lauri; Lahtinen, Elmeri; Kim, Hyeonseok; Armand, Michel; Cayla, Aurélie; Jamali, Arash; Grugeon, Sylvie; Dupont, Loic; Panier, Stéphane (Elsevier BV, 2021)In this paper, the ability to 3D print lithium-ion batteries through thermoplastic material extrusion and polymer powder bed fusion is considered. Focused on the formulation of positive electrodes composed of polypropylene, ... -
Preconcentration and speciation analysis of mercury : 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively coupled plasma mass spectrometry
Kulomäki, Suvi; Lahtinen, Elmeri; Perämäki, Siiri; Väisänen, Ari (Elsevier BV, 2022)A selective method for preconcentration and determination of methylmercury (MeHg) and inorganic mercury (iHg) in natural water samples at the ng L−1 level has been developed. The method involves adsorption of Hg species ... -
Selective Laser Sintering of Metal-Organic Frameworks : Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix
Lahtinen, Elmeri; Precker, Rafaella; Lahtinen, Manu; Hey-Hawkins, Evamarie; Haukka, Matti (Wiley - VCH Verlag GmbH & Co. KGaA, 2019)Metal‐organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well‐defined pore structures. One of the main challenges in the utilization of MOFs is their ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.