Näytä suppeat kuvailutiedot

dc.contributor.authorValkonen, Lauri
dc.contributor.authorTikka, Santtu
dc.contributor.authorHelske, Jouni
dc.contributor.authorKarvanen, Juha
dc.date.accessioned2024-06-19T09:26:21Z
dc.date.available2024-06-19T09:26:21Z
dc.date.issued2024
dc.identifier.citationValkonen, L., Tikka, S., Helske, J., & Karvanen, J. (2024). Price Optimization Combining Conjoint Data and Purchase History : A Causal Modeling Approach. <i>Observational Studies</i>, <i>10</i>(1), 37-53. <a href="https://doi.org/10.1353/obs.2024.a929116" target="_blank">https://doi.org/10.1353/obs.2024.a929116</a>
dc.identifier.otherCONVID_220750473
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96022
dc.description.abstractPricing decisions of companies require an understanding of the causal effect of a price change on the demand. When real-life pricing experiments are infeasible, data-driven decision-making must be based on alternative data sources such as purchase history (sales data) and conjoint studies where a group of customers is asked to make imaginary purchases in an artificial setup. We present an approach for price optimization that combines population statistics, purchase history, and conjoint data in a systematic way. We build on the recent advances in causal inference to identify and quantify the effect of price on the purchase probability at the customer level. The identification task is a transportability problem whose solution requires a parametric assumption on the differences between the conjoint study and real purchases. The causal effect is estimated using Bayesian methods that take into account the uncertainty of the data sources. The pricing decision is made by comparing the estimated posterior distributions of gross profit for different prices. The approach is demonstrated with simulated data resembling the features of real-world data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversity of Pennsylvania Press
dc.relation.ispartofseriesObservational Studies
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherBayesian model
dc.subject.othercausal inference
dc.subject.otherdata-fusion
dc.subject.otherdemand estimation
dc.subject.otherpricing
dc.subject.othertransportability
dc.titlePrice Optimization Combining Conjoint Data and Purchase History : A Causal Modeling Approach
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202406194787
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange37-53
dc.relation.issn2767-3324
dc.relation.numberinseries1
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber331817
dc.subject.ysooptimointi
dc.subject.ysobayesilainen menetelmä
dc.subject.ysohinnoittelu
dc.subject.ysokysyntä
dc.subject.ysokausaliteetti
dc.subject.ysoestimointi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p10773
jyx.subject.urihttp://www.yso.fi/onto/yso/p6256
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
jyx.subject.urihttp://www.yso.fi/onto/yso/p11349
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1353/obs.2024.a929116
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationLV was supported by the Finnish Cultural Foundation, Central Finland Regional Fund and the Foundation for Economic Education. ST and JH were supported by the Research Council of Finland, grant number 331817.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC-ND 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC-ND 4.0