dc.contributor.author | Levartoski de Araujo, Clodoaldo Irineu | |
dc.contributor.author | Virtanen, Pauli | |
dc.contributor.author | Spies, Maria | |
dc.contributor.author | González-Orellana, Carmen | |
dc.contributor.author | Kerschbaumer, Samuel | |
dc.contributor.author | Ilyn, Maxim | |
dc.contributor.author | Rogero, Celia | |
dc.contributor.author | Heikkilä, Tero Tapio | |
dc.contributor.author | Giazotto, Francesco | |
dc.contributor.author | Strambini, Elia | |
dc.date.accessioned | 2024-06-12T10:17:56Z | |
dc.date.available | 2024-06-12T10:17:56Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Levartoski de Araujo, C. I., Virtanen, P., Spies, M., González-Orellana, C., Kerschbaumer, S., Ilyn, M., Rogero, C., Heikkilä, T. T., Giazotto, F., & Strambini, E. (2024). Superconducting spintronic heat engine. <i>Nature Communications</i>, <i>15</i>, Article 4823. <a href="https://doi.org/10.1038/s41467-024-49052-z" target="_blank">https://doi.org/10.1038/s41467-024-49052-z</a> | |
dc.identifier.other | CONVID_220341489 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/95807 | |
dc.description.abstract | Heat engines are key devices that convert thermal energy into usable energy. Strong thermoelectricity, at the basis of electrical heat engines, is present in superconducting spin tunnel barriers at cryogenic temperatures where conventional semiconducting or metallic technologies cease to work. Here we realize a superconducting spintronic heat engine consisting of a ferromagnetic insulator/superconductor/insulator/ferromagnet tunnel junction (EuS/Al/AlOx/Co). The efficiency of the engine is quantified for bath temperatures ranging from 25 mK up to 800 mK, and at different load resistances. Moreover, we show that the sign of the generated thermoelectric voltage can be inverted according to the parallel or anti-parallel orientation of the two ferromagnetic layers, EuS and Co. This realizes a thermoelectric spin valve controlling the sign and strength of the Seebeck coefficient, thereby implementing a thermoelectric memory cell. We propose a theoretical model that allows describing the experimental data and predicts the engine efficiency for different device parameters. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Nature Publishing Group | |
dc.relation.ispartofseries | Nature Communications | |
dc.rights | CC BY 4.0 | |
dc.subject.other | devices for energy harvesting | |
dc.subject.other | spintronics | |
dc.subject.other | superconducting devices | |
dc.subject.other | surfaces | |
dc.subject.other | interfaces | |
dc.subject.other | thin films | |
dc.title | Superconducting spintronic heat engine | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202406124574 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2041-1723 | |
dc.relation.volume | 15 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 800923 | |
dc.relation.grantnumber | 800923 | |
dc.relation.grantnumber | 354735 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/800923/EU//SUPERTED | |
dc.subject.yso | lämpövoimakoneet | |
dc.subject.yso | suprajohteet | |
dc.subject.yso | ohutkalvot | |
dc.subject.yso | nanoelektroniikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p743 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p9946 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16644 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26991 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1038/s41467-024-49052-z | |
dc.relation.funder | European Commission | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Euroopan komissio | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | FET Future and Emerging Technologies, H2020 | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | FET Future and Emerging Technologies, H2020 | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | C.I.L.A., P.V., T.T.H., and F.G. acknowledge funding from the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 800923 (SuperTED). M.S. and E.S. acknowledge funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska Curie Action IF Grant No. 101022473 (SuperCONtacts). F.G. and E.S. acknowledge the EU’s Horizon 2020 Research and Innovation Framework Program under Grant Agreement No. 964398 (SUPERGATE), No. 101057977 (SPECTRUM), and the PNRR MUR project PE0000023-NQSTI for partial financial support. C.I.L.A. acknowledges Brazilian agencies FINEP, FAPEMIG APQ-04548-22, CNPq, and CAPES (Finance Code 001). C.G.O., S.K., M.I. and C.R. acknowledge financial support by the Spanish MCIU/AEI/10.13039/501100011033, and by the European Union “NextGenerationEU”/PRTR (grants No. PID2022-138750NB-C22 and TED2021-130292B-C42). T.T.H. and P.V. acknowledge the funding from the Research Council of Finland (grant no. 354735). | |
dc.type.okm | A1 | |