Superconducting spintronic heat engine
Levartoski de Araujo, C. I., Virtanen, P., Spies, M., González-Orellana, C., Kerschbaumer, S., Ilyn, M., Rogero, C., Heikkilä, T. T., Giazotto, F., & Strambini, E. (2024). Superconducting spintronic heat engine. Nature Communications, 15, Article 4823. https://doi.org/10.1038/s41467-024-49052-z
Julkaistu sarjassa
Nature CommunicationsTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 the Authors
Heat engines are key devices that convert thermal energy into usable energy. Strong thermoelectricity, at the basis of electrical heat engines, is present in superconducting spin tunnel barriers at cryogenic temperatures where conventional semiconducting or metallic technologies cease to work. Here we realize a superconducting spintronic heat engine consisting of a ferromagnetic insulator/superconductor/insulator/ferromagnet tunnel junction (EuS/Al/AlOx/Co). The efficiency of the engine is quantified for bath temperatures ranging from 25 mK up to 800 mK, and at different load resistances. Moreover, we show that the sign of the generated thermoelectric voltage can be inverted according to the parallel or anti-parallel orientation of the two ferromagnetic layers, EuS and Co. This realizes a thermoelectric spin valve controlling the sign and strength of the Seebeck coefficient, thereby implementing a thermoelectric memory cell. We propose a theoretical model that allows describing the experimental data and predicts the engine efficiency for different device parameters.
...
Julkaisija
Nature Publishing GroupISSN Hae Julkaisufoorumista
2041-1723Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/220341489
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
C.I.L.A., P.V., T.T.H., and F.G. acknowledge funding from the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 800923 (SuperTED). M.S. and E.S. acknowledge funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska Curie Action IF Grant No. 101022473 (SuperCONtacts). F.G. and E.S. acknowledge the EU’s Horizon 2020 Research and Innovation Framework Program under Grant Agreement No. 964398 (SUPERGATE), No. 101057977 (SPECTRUM), and the PNRR MUR project PE0000023-NQSTI for partial financial support. C.I.L.A. acknowledges Brazilian agencies FINEP, FAPEMIG APQ-04548-22, CNPq, and CAPES (Finance Code 001). C.G.O., S.K., M.I. and C.R. acknowledge financial support by the Spanish MCIU/AEI/10.13039/501100011033, and by the European Union “NextGenerationEU”/PRTR (grants No. PID2022-138750NB-C22 and TED2021-130292B-C42). T.T.H. and P.V. acknowledge the funding from the Research Council of Finland (grant no. 354735). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Large enhancement of spin pumping due to the surface bound states in normal metal–superconductor structures
Silaev, Mikhail (American Physical Society (APS), 2020)We show that the spin pumping from ferromagnetic insulator into the adjacent metallic spin sink can be strongly stimulated by the superconducting correlations. The key physical mechanism responsible for this effect is the ... -
Superconducting tunnel junctions and nanorefrigeration using InAs nanowires
Mastomäki, Jaakko (2017)Työssä selvitettiin menetelmää suprajohtavien kontaktien liittämiseksi ohuen eristekerroksen avulla vahvasti n-seostettuun puolijohtavaan InAs-nanolankaan. Lisäksi tutkittiin näin luotujen tunneliliitosten soveltamista ... -
Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic insulator bilayers of arbitrary thickness
Hijano, Alberto; Ilić, Stefan; Rouco, Mikel; González-Orellana, Carmen; Ilyn, Maxim; Rogero, Celia; Virtanen, P.; Heikkilä, T. T.; Khorshidian, S.; Spies, M.; Ligato, N.; Giazotto, F.; Strambini, E.; Bergeret, F. Sebastián (American Physical Society (APS), 2021)Ferromagnetic insulators (FI) can induce a strong exchange field in an adjacent superconductor (S) via the magnetic proximity effect. This manifests as spin splitting of the BCS density of states of the superconductor, an ... -
Superconducting tunnel junction fabrication on three-dimensional topography based on direct laser writing
Heiskanen, Samuli; Maasilta, Ilari J. (American Institute of Physics, 2020)Superconducting junctions are widely used in a multitude of applications ranging from quantum information science and sensing to solidstate cooling. Traditionally, such devices must be fabricated on flat substrates using ... -
High-quality superconducting titanium nitride thin film growth using infra-red pulsed laser deposition
Torgovkin, Andrii; Chaudhuri, Saumyadip; Ruhtinas, Aki; Lahtinen, Manu; Sajavaara, Timo; Maasilta, Ilari (IOP Publishing, 2018)Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.