Show simple item record

dc.contributor.authorLevartoski de Araujo, Clodoaldo Irineu
dc.contributor.authorVirtanen, Pauli
dc.contributor.authorSpies, Maria
dc.contributor.authorGonzález-Orellana, Carmen
dc.contributor.authorKerschbaumer, Samuel
dc.contributor.authorIlyn, Maxim
dc.contributor.authorRogero, Celia
dc.contributor.authorHeikkilä, Tero Tapio
dc.contributor.authorGiazotto, Francesco
dc.contributor.authorStrambini, Elia
dc.date.accessioned2024-06-12T10:17:56Z
dc.date.available2024-06-12T10:17:56Z
dc.date.issued2024
dc.identifier.citationLevartoski de Araujo, C. I., Virtanen, P., Spies, M., González-Orellana, C., Kerschbaumer, S., Ilyn, M., Rogero, C., Heikkilä, T. T., Giazotto, F., & Strambini, E. (2024). Superconducting spintronic heat engine. <i>Nature Communications</i>, <i>15</i>, Article 4823. <a href="https://doi.org/10.1038/s41467-024-49052-z" target="_blank">https://doi.org/10.1038/s41467-024-49052-z</a>
dc.identifier.otherCONVID_220341489
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95807
dc.description.abstractHeat engines are key devices that convert thermal energy into usable energy. Strong thermoelectricity, at the basis of electrical heat engines, is present in superconducting spin tunnel barriers at cryogenic temperatures where conventional semiconducting or metallic technologies cease to work. Here we realize a superconducting spintronic heat engine consisting of a ferromagnetic insulator/superconductor/insulator/ferromagnet tunnel junction (EuS/Al/AlOx/Co). The efficiency of the engine is quantified for bath temperatures ranging from 25 mK up to 800 mK, and at different load resistances. Moreover, we show that the sign of the generated thermoelectric voltage can be inverted according to the parallel or anti-parallel orientation of the two ferromagnetic layers, EuS and Co. This realizes a thermoelectric spin valve controlling the sign and strength of the Seebeck coefficient, thereby implementing a thermoelectric memory cell. We propose a theoretical model that allows describing the experimental data and predicts the engine efficiency for different device parameters.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.ispartofseriesNature Communications
dc.rightsCC BY 4.0
dc.subject.otherdevices for energy harvesting
dc.subject.otherspintronics
dc.subject.othersuperconducting devices
dc.subject.othersurfaces
dc.subject.otherinterfaces
dc.subject.otherthin films
dc.titleSuperconducting spintronic heat engine
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202406124574
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2041-1723
dc.relation.volume15
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber800923
dc.relation.grantnumber800923
dc.relation.grantnumber354735
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/800923/EU//SUPERTED
dc.subject.ysolämpövoimakoneet
dc.subject.ysosuprajohteet
dc.subject.ysoohutkalvot
dc.subject.ysonanoelektroniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p743
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p26991
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1038/s41467-024-49052-z
dc.relation.funderEuropean Commissionen
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuroopan komissiofi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramFET Future and Emerging Technologies, H2020en
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramFET Future and Emerging Technologies, H2020fi
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationC.I.L.A., P.V., T.T.H., and F.G. acknowledge funding from the EU’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 800923 (SuperTED). M.S. and E.S. acknowledge funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska Curie Action IF Grant No. 101022473 (SuperCONtacts). F.G. and E.S. acknowledge the EU’s Horizon 2020 Research and Innovation Framework Program under Grant Agreement No. 964398 (SUPERGATE), No. 101057977 (SPECTRUM), and the PNRR MUR project PE0000023-NQSTI for partial financial support. C.I.L.A. acknowledges Brazilian agencies FINEP, FAPEMIG APQ-04548-22, CNPq, and CAPES (Finance Code 001). C.G.O., S.K., M.I. and C.R. acknowledge financial support by the Spanish MCIU/AEI/10.13039/501100011033, and by the European Union “NextGenerationEU”/PRTR (grants No. PID2022-138750NB-C22 and TED2021-130292B-C42). T.T.H. and P.V. acknowledge the funding from the Research Council of Finland (grant no. 354735).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0