Automating test case generation based on user story using natural language processing to increase software testing efficiency
Tekijät
Päivämäärä
2024Pääsyrajoitukset
Tekijä ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyväskylän yliopiston kirjaston arkistotyösemalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat#autotoc-item-autotoc-2.
Tekijänoikeudet
© The Author(s)
Software testing is an important part of the software development life cycle (SLDC). In order to meet the requirements of software functionality, quality, and reliability, different kinds of testing are carried out during the development, deployment, and maintenance phases of the software. Testing processing can be carried out manually or automatically using automation scripts and tools. Currently, the major problems in software testing are time-consuming, and in cases of manual testing, error-proneness and cost add up to more challenges. In agile software development, testers need to analyse the requirements of the user stories in detail, and write test cases for the user stories. One user story might have multiple test cases, creating them manually requires a lot of time and effort. In recent years, Natural Language Processing(NLP) has made significant progress in understanding the meaning and context of human-understandable words and languages. The Transformer, a kind of NLP model, is able to perform a wide range of NLP related tasks with maximum accuracy. The purpose of this research is to understand and analyse the feasibility of using natural process language to generate software test cases automatically from user stories. By understanding user stories and converting them into appropriate test cases through the help of fine tuned T5 model, this research aims to decrease the time and effort needed to create test cases manually and improve the overall efficiency and accuracy of the software testing process. The research includes the study of transformer architecture, which is a deep learning model for natural language processing. Preparing custom datasets, preprocessing them, fine-tuning the T5 model on the prepared dataset, and finally assessing the model's performance using Recall-Oriented Understudy for Gisting Evaluation (ROUGE), a Natural Language Generation (NLG) assessment metric, are all included in the experiment section.
...
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29750]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Translating software instructions : a case study on the translation process of instructions for a subscription software, with special attention to translation problems
Koivuniemi, Milla (2017)Tutkielman tavoite oli selvittää teknisen tekstin kääntämisessä esiintyviä käännösongelmia ja prosessin yleistä luonnetta. Aineistona käytettiin lehtitalojen käyttöön tarkoitetun jakeluohjelmiston suomenkielistä käyttöopasta, ... -
Four fundamental software process modelling principles : the Case of Nokia Telecommunications
Rossi, Simo; Sillander, Tero (1997) -
Increasing the drying efficiency of cylinder drying
Keränen, Janne (University of Jyväskylä, 2011)This PhD Thesis concentrates on paper drying: first on the drying rate in a cylinder covered with fabric, enhanced using hot air impingement through the fabric, and its potential effects on paper quality, and second, on ... -
Continuous cover forestry is a cost-efficient tool to increase multifunctionality of boreal production forests in Fennoscandia
Peura, Maiju; Burgas Riera, Daniel; Eyvindson, Kyle; Repo, Anna; Mönkkönen, Mikko (Elsevier, 2017)Earlier research has suggested that the diversification of silvicultural strategies is a cost-efficient tool to ensure multifunctionality in production forests. This study compared the effects of continuous cover forestry ... -
Software patterns, organizational learning and software process improvement
Ahlgren, Riikka (University of Jyväskylä, 2011)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.