Näytä suppeat kuvailutiedot

dc.contributor.authorSaarela, Mirka
dc.date.accessioned2024-05-27T06:02:24Z
dc.date.available2024-05-27T06:02:24Z
dc.date.issued2024
dc.identifier.citationSaarela, M. (2024). On the relation of causality- versus correlation-based feature selection on model fairness. In <i>SAC '24 : Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing</i> (pp. 56-64). ACM. <a href="https://doi.org/10.1145/3605098.3636018" target="_blank">https://doi.org/10.1145/3605098.3636018</a>
dc.identifier.otherCONVID_215928897
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/95191
dc.description.abstractAs machine learning models are used increasingly in the educational domain, ensuring that they are fair and do not discriminate against certain groups or individuals is imperative. Although there are a few recent attempts to ensure fairness in these models, the majority of fairness literature tends to overlook the feature selection (FS) process despite its critical role as one of the foundational steps in the machine learning pipeline. Moreover, traditional FS methods identify features by examining the correlational relationships between predictive features and the target variable without seeking to uncover causal connections between them. To address these issues, we compare for four openly available datasets---two educational ones and two benchmark datasets regularly used in the fairness literature---the impact of these two different ways of FS (i.e., causality- versus correlation-based) on the performance and fairness of the resulting models. Our results show that causality-based FS generally leads to fairer models, while the models built after correlation-based FS manifest higher performance.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherACM
dc.relation.ispartofSAC '24 : Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing
dc.rightsCC BY 4.0
dc.subject.otherfeature selection
dc.subject.othercausality
dc.subject.otherMarkov blanket
dc.subject.otherIPCMB
dc.subject.othermachine learning fairness
dc.titleOn the relation of causality- versus correlation-based feature selection on model fairness
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202405273955
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn979-8-4007-0243-3
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange56-64
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Copyright held by the owner/author(s)
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceACM/SIGAPP Symposium on Applied Computing
dc.relation.grantnumber356314
dc.subject.ysokausaliteetti
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p333
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1145/3605098.3636018
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work was supported by the Otto A. Malm Foundation and the Academy of Finland (project no. 356314).
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0