dc.contributor.author | Cronin, Neil | |
dc.contributor.author | Lehtiö, Ari | |
dc.contributor.author | Talaskivi, Jussi | |
dc.contributor.editor | Särestöniemi, Mariella | |
dc.contributor.editor | Keikhosrokiani, Pantea | |
dc.contributor.editor | Singh, Daljeet | |
dc.contributor.editor | Harjula, Erkki | |
dc.contributor.editor | Tiulpin, Aleksei | |
dc.contributor.editor | Jansson, Miia | |
dc.contributor.editor | Isomursu, Minna | |
dc.contributor.editor | van Gils, Mark | |
dc.contributor.editor | Saarakkala, Simo | |
dc.contributor.editor | Reponen, Jarmo | |
dc.date.accessioned | 2024-05-23T11:52:34Z | |
dc.date.available | 2024-05-23T11:52:34Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Cronin, N., Lehtiö, A., & Talaskivi, J. (2024). Research for JYU : An AI-Driven, Fully Remote Mobile Application for Functional Exercise Testing. In M. Särestöniemi, P. Keikhosrokiani, D. Singh, E. Harjula, A. Tiulpin, M. Jansson, M. Isomursu, M. van Gils, S. Saarakkala, & J. Reponen (Eds.), <i>Digital Health and Wireless Solutions : First Nordic Conference, NCDHWS 2024, Oulu, Finland, May 7-8, 2024, Proceedings, Part I</i> (2083, pp. 279-287). Springer. Communications in Computer and Information Science. <a href="https://doi.org/10.1007/978-3-031-59091-7_18" target="_blank">https://doi.org/10.1007/978-3-031-59091-7_18</a> | |
dc.identifier.other | CONVID_213546109 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/95125 | |
dc.description.abstract | As people live longer, the incidence and severity of health problems increases, placing strain on healthcare systems. There is an urgent need for resource-wise approaches to healthcare. We present a system built using open-source tools that allows health and functional capacity data to be collected remotely. The app records performance on functional tests using the phone’s built-in camera and provides users with immediate feedback. Pose estimation is used to detect the user in the video. The x, y coordinates of key body landmarks are then used to compute further metrics such as joint angles and repetition durations. In a proof-of-concept study, we collected data from 13 patients who had recently undergone knee ligament or knee replacement surgery. Patients performed the sit-to-stand test twice, with an average difference in test duration of 1.12 s (range: 1.16–3.2 s). Y-coordinate locations allowed us to automatically identify repetition start and end times, while x, y coordinates were used to compute joint angles, a common rehabilitation outcome variable. Mean difference in repetition duration was 0.1 s (range: −0.4–0.4 s) between trials 1 and 2. Bland-Altman plots confirmed general test-retest consistency within participants. We present a mobile app that enables functional tests to be performed remotely and without supervision. We also demonstrate real-world feasibility, including the ability to automate the entire process, from testing to analysis and the provision of real-time feedback. This approach is scalable, and could form part of national health strategies, allowing healthcare providers to minimise the need for in-person appointments whilst yielding cost savings. | en |
dc.format.extent | 433 | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Digital Health and Wireless Solutions : First Nordic Conference, NCDHWS 2024, Oulu, Finland, May 7-8, 2024, Proceedings, Part I | |
dc.relation.ispartofseries | Communications in Computer and Information Science | |
dc.rights | CC BY 4.0 | |
dc.subject.other | computer vision | |
dc.subject.other | remote rehabilitation | |
dc.subject.other | mobile health app | |
dc.title | Research for JYU : An AI-Driven, Fully Remote Mobile Application for Functional Exercise Testing | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202405233889 | |
dc.contributor.laitos | Liikuntatieteellinen tiedekunta | fi |
dc.contributor.laitos | Yliopistopalvelut | fi |
dc.contributor.laitos | Faculty of Sport and Health Sciences | en |
dc.contributor.laitos | University Services | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-3-031-59090-0 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 279-287 | |
dc.relation.issn | 1865-0929 | |
dc.relation.volume | 2083 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | |
dc.type.publication | conferenceObject | |
dc.relation.conference | Nordic Conference on Digital Health and Wireless Solutions | |
dc.subject.yso | kuntoutus | |
dc.subject.yso | etäkäyttö | |
dc.subject.yso | konenäkö | |
dc.subject.yso | mobiilisovellukset | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3320 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20557 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2618 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27414 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1007/978-3-031-59091-7_18 | |
dc.type.okm | A4 | |