Left-invariant distributions diffeomorphic to flat distributions
Nicolussi Golo, S., & Ottazzi, A. (2024). Left-invariant distributions diffeomorphic to flat distributions. Geometriae Dedicata, 218(2), Article 56. https://doi.org/10.1007/s10711-024-00905-3
Julkaistu sarjassa
Geometriae DedicataPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
For a stratified group G, we construct a class of Lie groups endowed with a left-invariant distribution locally diffeomorphic to the flat distribution of G. Vice versa, we show that all Lie groups with a left-invariant distribution that is locally diffeomorphic to the flat distribution of G belong to the class we constructed, if the Lie algebra of G has finite Tanaka prolongation.
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
0046-5755Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/213513074
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissioRahoitusohjelmat(t)
EU:n 7. puiteohjelma (FP7)
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
Open Access funding enabled and organized by CAUL and its Member Institutions. Sebastiano Nicolussi Golo has been partially supported by the European Unions Seventh Framework Programme, Marie Curie Actions-Initial Training Network, under Grant Agreement No. 607643, “Metric Analysis For Emergent Technologies (MAnET)”, and by the EPSRC Grant "Sub-Elliptic Harmonic Analysis" (EP/P002447/1), and by University of Padova STARS Project "Sub-Riemannian Geometry and Geometric Measure Theory Issues: Old and New". Alessandro Ottazzi has been partially supported by the ARC Discovery grant DP170103025. Data sharing not applicable to this article as no datasets were generated or analysed during the current study. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Extremal polynomials in stratified groups
Le Donne, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide (International Press, 2018)We introduce a family of extremal polynomials associated with the prolongation of a stratified nilpotent Lie algebra. These polynomials are related to a new algebraic characterization of abnormal sub-Riemannian extremals ... -
Invariant metrics on lie groups : bi-invariance and one-parametre subgroups
Purho, Valto (2022)We show that an admissible left-invariant geodetic metric on a connected Lie group is bi-invariant if and only if every one-parametre subgroup t 7→ exp(tX) is a geodesic. -
Homogeneous and conformally invariant variational integrals
Kilpeläinen, Tero (1985) -
Limiting Carleman weights and conformally transversally anisotropic manifolds
Angulo, Pablo; Faraco, Daniel; Guijarro, Luis; Salo, Mikko (American Mathematical Society, 2020)We analyze the structure of the set of limiting Carleman weights in all conformally flat manifolds, $ 3$-manifolds, and $ 4$-manifolds. In particular we give a new proof of the classification of Euclidean limiting Carleman ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.