Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data
Zhang, G., Carrasco, C. D., Winsler, K., Bahle, B., Cong, F., & Luck, S. J. (2024). Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data. Neuroimage, 293, Article 120625. https://doi.org/10.1016/j.neuroimage.2024.120625
Published in
NeuroimageAuthors
Date
2024Copyright
© 2024 The Author(s). Published by Elsevier Inc
Principal component analysis (PCA) has been widely employed for dimensionality reduction prior to multivariate pattern classification (decoding) in EEG research. The goal of the present study was to provide an evaluation of the effectiveness of PCA on decoding accuracy (using support vector machines) across a broad range of experimental paradigms. We evaluated several different PCA variations, including group-based and subject-based component decomposition and the application of Varimax rotation or no rotation. We also varied the numbers of PCs that were retained for the decoding analysis. We evaluated the resulting decoding accuracy for seven common event-related potential components (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity). We also examined more challenging decoding tasks, including decoding of face identity, facial expression, stimulus location, and stimulus orientation. The datasets also varied in the number and density of electrode sites. Our findings indicated that none of the PCA approaches consistently improved decoding performance related to no PCA, and the application of PCA frequently reduced decoding performance. Researchers should therefore be cautious about using PCA prior to decoding EEG data from similar experimental paradigms, populations, and recording setups.
...
Publisher
ElsevierISSN Search the Publication Forum
1053-8119Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/213533164
Metadata
Show full item recordCollections
Additional information about funding
This study was made possible by grants R01MH087450 and R01 EY033329 from the National Institutes of Health to SJL, USA .License
Related items
Showing items with similar title or keywords.
-
One and Two Dimensional Convolutional Neural Networks for Seizure Detection Using EEG Signals
Wang, Xiaoshuang; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2020)Deep learning for the automated detection of epileptic seizures has received much attention during recent years. In this work, one dimensional convolutional neural network (1D-CNN) and two dimensional convolutional neural ... -
Dimension Reduction for Time Series in a Blind Source Separation Context Using R
Nordhausen, Klaus; Matilainen, Markus; Miettinen, Jari; Virta, Joni; Taskinen, Sara (Foundation for Open Access Statistic, 2021)Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative ... -
One Dimensional Convolutional Neural Networks for Seizure Onset Detection Using Long-term Scalp and Intracranial EEG
Wang, Xiaoshuang; Wang, Xiulin; Liu, Wenya; Chang, Zheng; Kärkkäinen, Tommi; Cong, Fengyu (Elsevier, 2021)Epileptic seizure detection using scalp electroencephalogram (sEEG) and intracranial electroencephalogram (iEEG) has attracted widespread attention in recent two decades. The accurate and rapid detection of seizures not ... -
One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG
Wang, Xiaoshuang; Zhang, Guanghui; Wang, Ying; Yang, Lin; Liang, Zhanhua; Cong, Fengyu (World Scientific, 2022)Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally ... -
Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data with a Phase Sparsity Constraint
Kuang, Li-Dan; Lin, Qiu-Hua; Gong, Xiao-Feng; Cong, Fengyu; Wang, Yu-Ping; Calhoun, Vince D. (IEEE, 2020)Canonical polyadic decomposition (CPD) of multi-subject complex-valued fMRI data can be used to provide spatially and temporally shared components among groups with both magnitude and phase information. However, the CPD ...