dc.contributor.author | Pääkkönen, Salli | |
dc.contributor.author | Pölönen, Ilkka | |
dc.contributor.author | Raita-Hakola, Anna-Maria | |
dc.contributor.author | Carneiro, Mariana | |
dc.contributor.author | Cardoso, Helena | |
dc.contributor.author | Mauricio, Dinis | |
dc.contributor.author | Rodrigues, Alexandre Miguel Cavaco | |
dc.contributor.author | Salmi, Pauliina | |
dc.date.accessioned | 2024-05-15T09:13:00Z | |
dc.date.available | 2024-05-15T09:13:00Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Pääkkönen, S., Pölönen, I., Raita-Hakola, A.-M., Carneiro, M., Cardoso, H., Mauricio, D., Rodrigues, A. M. C., & Salmi, P. (2024). Non-invasive monitoring of microalgae cultivations using hyperspectral imager. <i>Journal of Applied Phycology</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s10811-024-03256-4" target="_blank">https://doi.org/10.1007/s10811-024-03256-4</a> | |
dc.identifier.other | CONVID_213605226 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94847 | |
dc.description.abstract | High expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 15–24%, with the standard deviation (SD) of 13-18 for the diferent species. MAPE for the convolutional neural network was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve microalgae-biomass-based signals in different cultivation systems. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer Nature | |
dc.relation.ispartofseries | Journal of Applied Phycology | |
dc.rights | CC BY 4.0 | |
dc.subject.other | green microalgae | |
dc.subject.other | hyperspectral imaging | |
dc.subject.other | non-invasive monitoring | |
dc.subject.other | vegetation indices | |
dc.subject.other | convolutional neural network | |
dc.subject.other | model comparison | |
dc.title | Non-invasive monitoring of microalgae cultivations using hyperspectral imager | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202405153616 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0921-8971 | |
dc.relation.volume | Early online | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Author(s) 2024 | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 7134/31/2021 | |
dc.subject.yso | biomolekyylit | |
dc.subject.yso | biotekniikka | |
dc.subject.yso | vesiviljely (kalatalous) | |
dc.subject.yso | mikrolevät | |
dc.subject.yso | kuvantaminen | |
dc.subject.yso | monitorointi | |
dc.subject.yso | hyperspektrikuvantaminen | |
dc.subject.yso | laskennallinen tiede | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27773 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2348 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p5099 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p26977 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3532 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3628 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39290 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21978 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | https://doi.org/10.23729/1e576402-1ccc-4974-a392-e014bd6cec38 | |
dc.relation.doi | 10.1007/s10811-024-03256-4 | |
dc.relation.funder | Business Finland | en |
dc.relation.funder | Business Finland | fi |
jyx.fundingprogram | Public research networked with companies, BF | en |
jyx.fundingprogram | Elinkeinoelämän kanssa verkottunut tutkimus, BF | fi |
jyx.fundinginformation | Open Access funding provided by University of Jyväskylä (JYU). This research was funded by the European Union - NextGenerationEU via Business Finland, funding decision number 7134/31/2021 | |
dc.type.okm | A1 | |