Show simple item record

dc.contributor.authorPääkkönen, Salli
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorRaita-Hakola, Anna-Maria
dc.contributor.authorCarneiro, Mariana
dc.contributor.authorCardoso, Helena
dc.contributor.authorMauricio, Dinis
dc.contributor.authorRodrigues, Alexandre Miguel Cavaco
dc.contributor.authorSalmi, Pauliina
dc.date.accessioned2024-05-15T09:13:00Z
dc.date.available2024-05-15T09:13:00Z
dc.date.issued2024
dc.identifier.citationPääkkönen, S., Pölönen, I., Raita-Hakola, A.-M., Carneiro, M., Cardoso, H., Mauricio, D., Rodrigues, A. M. C., & Salmi, P. (2024). Non-invasive monitoring of microalgae cultivations using hyperspectral imager. <i>Journal of Applied Phycology</i>, <i>Early online</i>. <a href="https://doi.org/10.1007/s10811-024-03256-4" target="_blank">https://doi.org/10.1007/s10811-024-03256-4</a>
dc.identifier.otherCONVID_213605226
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94847
dc.description.abstractHigh expectations are placed on microalgae as a sustainable source of valuable biomolecules. Robust methods to control microalgae cultivation processes are needed to enhance their efficiency and, thereafter, increase the profitability of microalgae-based products. To meet this need, a non-invasive monitoring method based on a hyperspectral imager was developed for laboratory scale and afterwards tested on industrial scale cultivations. In the laboratory experiments, reference data for microalgal biomass concentration was gathered to construct 1) a vegetation index-based linear regression model and 2) a one-dimensional convolutional neural network model to resolve microalgae biomass concentration from the spectral images. The two modelling approaches were compared. The mean absolute percentage error (MAPE) for the index-based model was 15–24%, with the standard deviation (SD) of 13-18 for the diferent species. MAPE for the convolutional neural network was 11–26% (SD = 10–22). Both models predicted the biomass well. The convolutional neural network could also classify the monocultures of green algae by species (accuracy of 97–99%). The index-based model was fast to construct and easy to interpret. The index-based monitoring was also tested in an industrial setup demonstrating a promising ability to retrieve microalgae-biomass-based signals in different cultivation systems.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.ispartofseriesJournal of Applied Phycology
dc.rightsCC BY 4.0
dc.subject.othergreen microalgae
dc.subject.otherhyperspectral imaging
dc.subject.othernon-invasive monitoring
dc.subject.othervegetation indices
dc.subject.otherconvolutional neural network
dc.subject.othermodel comparison
dc.titleNon-invasive monitoring of microalgae cultivations using hyperspectral imager
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202405153616
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0921-8971
dc.relation.volumeEarly online
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2024
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber7134/31/2021
dc.subject.ysobiomolekyylit
dc.subject.ysobiotekniikka
dc.subject.ysovesiviljely (kalatalous)
dc.subject.ysomikrolevät
dc.subject.ysokuvantaminen
dc.subject.ysomonitorointi
dc.subject.ysohyperspektrikuvantaminen
dc.subject.ysolaskennallinen tiede
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27773
jyx.subject.urihttp://www.yso.fi/onto/yso/p2348
jyx.subject.urihttp://www.yso.fi/onto/yso/p5099
jyx.subject.urihttp://www.yso.fi/onto/yso/p26977
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p3628
jyx.subject.urihttp://www.yso.fi/onto/yso/p39290
jyx.subject.urihttp://www.yso.fi/onto/yso/p21978
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://doi.org/10.23729/1e576402-1ccc-4974-a392-e014bd6cec38
dc.relation.doi10.1007/s10811-024-03256-4
dc.relation.funderBusiness Finlanden
dc.relation.funderBusiness Finlandfi
jyx.fundingprogramPublic research networked with companies, BFen
jyx.fundingprogramElinkeinoelämän kanssa verkottunut tutkimus, BFfi
jyx.fundinginformationOpen Access funding provided by University of Jyväskylä (JYU). This research was funded by the European Union - NextGenerationEU via Business Finland, funding decision number 7134/31/2021
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0