Model-independent Approach of the JUNO 8B Solar Neutrino Program
JUNO Collaboratorion. (2024). Model-independent Approach of the JUNO 8B Solar Neutrino Program. Astrophysical Journal, 965, Article 122. https://doi.org/10.3847/1538-4357/ad2bfd
Published in
Astrophysical JournalAuthors
Date
2024Copyright
© 2024 the Authors
The physics potential of detecting 8 B solar neutrinos will be exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model-independent manner by using three distinct channels of the charged current (CC), neutral current (NC), and elastic scattering (ES) interactions. Due to the largest-ever mass of 13C nuclei in the liquid scintillator detectors and the expected low background level, 8 B solar neutrinos are observable in the CC and NC interactions on 13C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC, and ES channels to guarantee the observation of the 8 B solar neutrinos. From the sensitivity studies performed in this work, we show that JUNO, with 10 yr of data, can reach the 1σ precision levels of 5%, 8%, and 20% for the 8 B neutrino flux,sin q2 12, and Dm21 2 , respectively. Probing the details of both solar physics and neutrino physics would be unique and helpful. In addition, when combined with the Sudbury Neutrino Observatory measurement, the world's best precision of 3% is expected for the measurement of the 8 B neutrino flux.
...
Publisher
IOP PublishingISSN Search the Publication Forum
0004-637XKeywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/213249903
Metadata
Show full item recordCollections
Additional information about funding
This work was supported by the Chinese Academy of Sciences, the National Key R&D Program of China, the CAS Center for Excellence in Particle Physics, Wuyi University, and the Tsung-Dao Lee Institute of Shanghai Jiao Tong University in China, the Institut National de Physique Nucléaire et de Physique de Particules (IN2P3) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, the Italian-Chinese collaborative research program MAECI-NSFC, the Fond de la Recherche Scientifique (F.R.S-FNRS) and FWO under the "Excellence of Science—EOS" in Belgium, the Conselho Nacional de Desenvolvimento Científico e Tecnològico in Brazil, the Agencia Nacional de Investigacion y Desarrollo and ANID—Millennium Science Initiative Program—ICN2019_044 in Chile, the Charles University Research Center and the Ministry of Education, Youth, and Sports in Czech Republic, the Deutsche Forschungsgemeinschaft (DFG), the Helmholtz Association, and the Cluster of Excellence PRISMA+ in Germany, the Joint Institute of Nuclear Research (JINR) and Lomonosov Moscow State University in Russia, the joint Russian Science Foundation (RSF) and National Natural Science Foundation of China (NSFC) research program, the MOST and MOE in Taiwan, the Chulalongkorn University and Suranaree University of Technology in Thailand, University of California at Irvine, and the National Science Foundation in the US. ...License
Related items
Showing items with similar title or keywords.
-
Supernova neutrino burst detection with the Deep Underground Neutrino Experiment
DUNE Collaboration (Springer, 2021)The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from ... -
Prospects for detecting the diffuse supernova neutrino background with JUNO
JUNO collaboration (IOP Publishing, 2022)We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We ... -
Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment
DUNE Collaboration (American Physical Society (APS), 2023)A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. ... -
Real-time monitoring for the next core-collapse supernova in JUNO
JUNO collaboration (IOP Publishing, 2024)The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a ... -
Neutral-current supernova neutrino-nucleus scattering off 127I and 133Cs
Hellgren, Matti; Suhonen, Jouni (American Physical Society (APS), 2022)A large number of the presently running neutrino and dark-matter experiments use thallium-doped cesium-iodide CsI[Tl] crystals, sodium-doped cesium-iodide CsI[Na] crystals, or thallium-doped sodium-iodide NaI[Tl] crystals. ...