Show simple item record

dc.contributor.authorTerziyan, Vagan
dc.contributor.authorBilokon, Bohdan
dc.contributor.authorGavriushenko, Mariia
dc.date.accessioned2024-04-04T06:33:16Z
dc.date.available2024-04-04T06:33:16Z
dc.date.issued2024
dc.identifier.citationTerziyan, V., Bilokon, B., & Gavriushenko, M. (2024). Deep Homeomorphic Data Encryption for Privacy Preserving Machine Learning. <i>Procedia Computer Science</i>, <i>232</i>, 2201-2212. <a href="https://doi.org/10.1016/j.procs.2024.02.039" target="_blank">https://doi.org/10.1016/j.procs.2024.02.039</a>
dc.identifier.otherCONVID_207726510
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94147
dc.description.abstractAddressing privacy concerns is critical in smart manufacturing where sensitive data is used for machine learning. Data protection is essential to ensure model accuracy while upholding data privacy. Homeomorphic encryption, an algorithm for privacy-preserving machine learning, achieves this by transforming data using a neural network with secret key weights. This process conceals private data while retaining the potential to learn classification models from the anonymized data. This paper introduces a comprehensive quality metric to assess homeomorphic encryption across conflicting criteria: security (regarding private data), machine learning adaptability (tolerance), and efficiency (regarding needed extra resources). Through experiments on various datasets, the metric proves its effectiveness in guiding optimal encryption parameter selection. Our findings highlight homeomorphic encryption's strong overall quality, positioning it as a valuable Industry 4.0 solution. By offering a simpler alternative to fully homomorphic encryption, it effectively addresses privacy concerns and enhances data usability in the context of smart manufacturing. See presentation slides: https://ai.it.jyu.fi/ISM-2023-Encryption_Metric.pptxen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesProcedia Computer Science
dc.rightsCC BY-NC-ND 4.0
dc.subject.othersmart manufacturing
dc.subject.otherdata privacy
dc.subject.otherprivacy-preserving machine learning
dc.subject.otherquality metric
dc.subject.otherhomeomorphic encryption
dc.titleDeep Homeomorphic Data Encryption for Privacy Preserving Machine Learning
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202404042693
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2201-2212
dc.relation.issn1877-0509
dc.relation.volume232
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysotietosuoja
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3636
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.procs.2024.02.039
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0