Encryption and Generation of Images for Privacy-Preserving Machine Learning in Smart Manufacturing
Terziyan, V., Malyk, D., Golovianko, M., & Branytskyi, V. (2023). Encryption and Generation of Images for Privacy-Preserving Machine Learning in Smart Manufacturing. In F. Longo, M. Affenzeller, A. Padovano, & S. Weiming (Eds.), 4th International Conference on Industry 4.0 and Smart Manufacturing (217, pp. 91-101). Elsevier. Procedia Computer Science. https://doi.org/10.1016/j.procs.2022.12.205
Julkaistu sarjassa
Procedia Computer SciencePäivämäärä
2023Tekijänoikeudet
© 2022 The Authors. Published by Elsevier B.V.
Current advances in machine (deep) learning and the exponential growth of data collected by and shared between smart manufacturing processes give a unique opportunity to get extra value from that data. The use of public machine learning services actualizes the issue of data privacy. Ordinary encryption protects the data but could make it useless for the machine learning objectives. Therefore, “privacy of data vs. value from data” is the major dilemma within the privacy preserving machine learning activity. Special encryption techniques or synthetic data generation are being in focus to address the issue. In this paper, we discuss a complex hybrid protection algorithm, which assumes sequential use of two components: homeomorphic data space transformation and synthetic data generation. Special attention is given to the privacy of image data. Specifics of image representation require special approaches towards encryption and synthetic image generation. We suggest use of (convolutional, variational) autoencoders and pre-trained feature extractors to enable applying privacy protection algorithms on top of the latent feature vectors captured from the images, and we updated the hybrid algorithms composed of homeomorphic transformation-as-encryption plus synthetic image generation accordingly. We show that an encrypted image can be reconstructed (by the pre-trained Decoder component of the convolutional variational autoencoder) into a secured representation from the extracted (by either the Encoder or a feature extractor) and encrypted (homeomorphic transformation of the latent space) feature vector.
See presentation slides: https://ai.it.jyu.fi/ISM-2022-Image_Encryption.pptx
...
Julkaisija
ElsevierKonferenssi
International Conference on Industry 4.0 and Smart ManufacturingKuuluu julkaisuun
4th International Conference on Industry 4.0 and Smart ManufacturingISSN Hae Julkaisufoorumista
1877-0509Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/172579401
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Deep Homeomorphic Data Encryption for Privacy Preserving Machine Learning
Terziyan, Vagan; Bilokon, Bohdan; Gavriushenko, Mariia (Elsevier, 2024)Addressing privacy concerns is critical in smart manufacturing where sensitive data is used for machine learning. Data protection is essential to ensure model accuracy while upholding data privacy. Homeomorphic encryption, ... -
Anonymization as homeomorphic data space transformation for privacy-preserving deep learning
Girka, Anastasiia; Terziyan, Vagan; Gavriushenko, Mariia; Gontarenko, Andrii (Elsevier, 2021)Industry 4.0 is largely data-driven nowadays. Owners of the data, on the one hand, want to get added value from the data by using remote artificial intelligence tools as services, on the other hand, they concern on privacy ... -
CCTV-FullyAware : toward end-to-end feasible privacy-enhancing and CCTV forensics applications
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo; Lahtinen, Tuomo; Sintonen, Lauri (IEEE, 2022)It is estimated that over 1 billion Closed-Circuit Television (CCTV) cameras are operational worldwide. The advertised main benefits of CCTV cameras have always been the same; physical security, safety, and crime deterrence. ... -
CCTVCV : Computer Vision model/dataset supporting CCTV forensics and privacy applications
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo; Lahtinen, Tuomo; Sintonen, Lauri (IEEE, 2022)The increased, widespread, unwarranted, and unaccountable use of Closed-Circuit TeleVision (CCTV) cameras globally has raised concerns about privacy risks for the last several decades. Recent technological advances implemented ... -
Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0
Branytskyi, Vladyslav; Golovianko, Mariia; Malyk, Diana; Terziyan, Vagan (Elsevier, 2022)Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and related processes. It brings up the next generation of manufacturing technology and systems ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.