Show simple item record

dc.contributor.authorKaikova, Olena
dc.contributor.authorTerziyan, Vagan
dc.date.accessioned2024-03-27T13:03:51Z
dc.date.available2024-03-27T13:03:51Z
dc.date.issued2024
dc.identifier.citationKaikova, O., & Terziyan, V. (2024). Deep Neural Networks, Cellular Automata and Petri Nets : Useful Hybrids for Smart Manufacturing. <i>Procedia Computer Science</i>, <i>232</i>, 2334-2346. <a href="https://doi.org/10.1016/j.procs.2024.02.052" target="_blank">https://doi.org/10.1016/j.procs.2024.02.052</a>
dc.identifier.otherCONVID_207723544
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94099
dc.description.abstractIn the era of Industry 4.0 and beyond, intelligent and reliable models are vital for processes and assets. Models in smart manufacturing involve combining knowledge-based and data-driven methods with discrete and continuous modelling components. Formalism choice determines models' strengths and weaknesses in accuracy, efficiency, robustness, and explainability. Hybrid models seem to be the only way to address the complexity of modern industrial systems with respect to different and conflicting quality criteria. This study focuses on three paradigms: Petri nets, cellular automata, and neural network driven deep learning. We create four hybrids: Petri nets controlling deep neural networks, and vice versa; cellular automata controlling deep neural networks, and vice versa. These hybrids combine explainable discrete models with continuous black-box models, enhancing either explainability with robustness or elevating accuracy with efficiency. The flexibility of these and similar hybrids enable enhancement of the scope and quality of modeling and simulation in smart manufacturing. See presentation slides: https://ai.it.jyu.fi/ISM-2023-Hybrids.pptxen
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesProcedia Computer Science
dc.rightsCC BY-NC-ND 4.0
dc.subject.othermodelling
dc.subject.otherPetri nets
dc.subject.othercellular automata
dc.subject.otherneural networks
dc.subject.otherhybrid models
dc.titleDeep Neural Networks, Cellular Automata and Petri Nets : Useful Hybrids for Smart Manufacturing
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202403272643
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange2334-2346
dc.relation.issn1877-0509
dc.relation.volume232
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysoneuroverkot
dc.subject.ysosoluautomaatit
dc.subject.ysomallintaminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p24342
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.1016/j.procs.2024.02.052
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0