Deep Neural Networks, Cellular Automata and Petri Nets : Useful Hybrids for Smart Manufacturing
Kaikova, O., & Terziyan, V. (2024). Deep Neural Networks, Cellular Automata and Petri Nets : Useful Hybrids for Smart Manufacturing. Procedia Computer Science, 232, 2334-2346. https://doi.org/10.1016/j.procs.2024.02.052
Julkaistu sarjassa
Procedia Computer SciencePäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
In the era of Industry 4.0 and beyond, intelligent and reliable models are vital for processes and assets. Models in smart manufacturing involve combining knowledge-based and data-driven methods with discrete and continuous modelling components. Formalism choice determines models' strengths and weaknesses in accuracy, efficiency, robustness, and explainability. Hybrid models seem to be the only way to address the complexity of modern industrial systems with respect to different and conflicting quality criteria. This study focuses on three paradigms: Petri nets, cellular automata, and neural network driven deep learning. We create four hybrids: Petri nets controlling deep neural networks, and vice versa; cellular automata controlling deep neural networks, and vice versa. These hybrids combine explainable discrete models with continuous black-box models, enhancing either explainability with robustness or elevating accuracy with efficiency. The flexibility of these and similar hybrids enable enhancement of the scope and quality of modeling and simulation in smart manufacturing.
See presentation slides: https://ai.it.jyu.fi/ISM-2023-Hybrids.pptx
...
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
1877-0509Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207723544
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Process‐Informed Neural Networks : A Hybrid Modelling Approach to Improve Predictive Performance and Inference of Neural Networks in Ecology and Beyond
Wesselkamp, Marieke; Moser, Niklas; Kalweit, Maria; Boedecker, Joschka; Dormann, Carsten F. (Wiley, 2024)Despite deep learning being state of the art for data-driven model predictions, its application in ecology is currently subject to two important constraints: (i) deep-learning methods are powerful in data-rich regimes, but ... -
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
Novel quantum‐dot cellular automata BCD to excess‐3 code converter
Akbari‐Hasanjani, Reza; Kianpour, Moein; Dehbozorgi, Leila; Sabbaghi‐Nadooshan, Reza; Haghparast, Majid (Wiley, 2024)Binary-code decimal (BCD) to Excess-3 converters (BCD-XS3) can be used as an interface between two systems with different codes, and they can be used to synchronize those systems. Two novel approaches for quantum dot ... -
Creative and Adversarial Cellular Automata for Simulating Resilience in Industry 5.0
Terziyan, Vagan; Terziian, Artur; Vitko, Oleksandra (Elsevier, 2024)Emerging Industry 5.0 pushes advanced automation towards resilient solutions with enhanced human role. Resilience as an ability to sustain processes in the face of disruptions and adversarial attacks requires careful ... -
Advancing Nanoscale Computing : Efficient Reversible ALU in Quantum-Dot Cellular Automata
Nemattabar, Shahrokh; Mosleh, Mohammad; Haghparast, Majid; Kheyrandish, Mohammad (Elsevier, 2024)This paper presents a significant contribution to the field of nanoscale computing by proposing an innovative reversible Arithmetic and Logic Unit (ALU) implemented in Quantum-Dot Cellular Automata (QCA). Reversible logic ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.