dc.contributor.author | Hao, Xinyu | |
dc.contributor.author | Xu, Hongming | |
dc.contributor.author | Zhao, Nannan | |
dc.contributor.author | Yu, Tao | |
dc.contributor.author | Hämäläinen, Timo | |
dc.contributor.author | Cong, Fengyu | |
dc.date.accessioned | 2024-03-21T07:32:25Z | |
dc.date.available | 2024-03-21T07:32:25Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Hao, X., Xu, H., Zhao, N., Yu, T., Hämäläinen, T., & Cong, F. (2024). Predicting pathological complete response based on weakly and semi-supervised joint learning in breast cancer multi-parametric MRI. <i>Biomedical Signal Processing and Control</i>, <i>93</i>, Article 106164. <a href="https://doi.org/10.1016/j.bspc.2024.106164" target="_blank">https://doi.org/10.1016/j.bspc.2024.106164</a> | |
dc.identifier.other | CONVID_207426349 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94001 | |
dc.description.abstract | Neoadjuvant chemotherapy (NAC) is the primary treatment used to reduce the tumor size in early breast cancer. Patients who achieve a pathological complete response (pCR) after NAC treatment have a significantly higher five-year survival rate. However, accurately predicting whether patients could achieve pCR remains challenging due to the limited availability of manually annotated MRI data. This study develops a weakly and semi-supervised joint learning model that integrates multi-parametric MR images to predict pCR to NAC in breast cancer patients. First, the attention-based multi-instance learning model is designed to characterize the representation of multi-parametric MR images in a weakly supervised learning setting. The Mean-Teacher learning framework is then developed to locate tumor regions for extracting radiochemical parameters in a semi-supervised learning setting. Finally, all extracted MR imaging features are fused to predict pCR to NAC. Our experiments were conducted on a cohort of 442 patients with multi-parametric MR images and NAC outcomes. The results demonstrate that our proposed model, which leverages multi-parametric MRI data, provides the AUC value of over 0.85 in predicting pCR to NAC, outperforming other comparative methods. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Biomedical Signal Processing and Control | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | weakly-supervised learning | |
dc.subject.other | semi-supervised learning | |
dc.subject.other | attention mechanism | |
dc.subject.other | pathological complete response | |
dc.subject.other | breast cancer | |
dc.title | Predicting pathological complete response based on weakly and semi-supervised joint learning in breast cancer multi-parametric MRI | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202403212544 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 1746-8094 | |
dc.relation.volume | 93 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | embargoedAccess | fi |
dc.type.publication | article | |
dc.subject.yso | hoitomenetelmät | |
dc.subject.yso | magneettikuvaus | |
dc.subject.yso | rintasyöpä | |
dc.subject.yso | lääkehoito | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p392 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12131 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p20019 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10851 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1016/j.bspc.2024.106164 | |
jyx.fundinginformation | This work was supported by National Natural Science Foundation of China (Grant No. 82102135), the Fundamental Research Funds for the Central Universities (Grant No. DUT22YG114, Grant No. DUT23YG130), the Natural Science Foundation of Liaoning Province (Grant No. 2022-YGJC-36) and the scholarship from the China Scholarship Council (No. 202006060060). | |
dc.type.okm | A1 | |