On transient absorption and dual emission of the atomically precise, DNA-stabilized silver nanocluster Ag16Cl2
Malola, S., & Häkkinen, H. (2024). On transient absorption and dual emission of the atomically precise, DNA-stabilized silver nanocluster Ag16Cl2. Chemical Communications, 60(24), 3315-3318. https://doi.org/10.1039/d3cc06085c
Published in
Chemical CommunicationsDate
2024Copyright
© 2024 The Royal Society of Chemistry
DNA-stabilized silver nanoclusters with 10 to 30 silver atoms are interesting biocompatible nanomaterials with intriguing fluorescence properties. However, they are not well understood, since atom-scale high level theoretical calculations have not been possible due to a lack of firm experimental structural information. Here, by using density functional theory (DFT), we study the recently atomically resolved (DNA)2–Ag16Cl2 nanocluster in solvent under the lowest-lying singlet (S1) and triplet (T1) excited states, estimate the relative emission maxima for the allowed (S1 - S0) and dark (T1 - S0) transitions, and evaluate the transient absorption spectra. Our results offer a potential interpretation of the recently reported transient absorption and dual emission of similar DNA-stabilized silver nanoclusters, providing a mechanistic view on their photophysical properties that are attractive for applications in biomedical imaging and biophotonics.
Publisher
Royal Society of ChemistryISSN Search the Publication Forum
1359-7345Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/207496778
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
This work was supported by the Academy of Finland (grant 355083). The computations were made at the Finnish national supercomputing center CSC (computing grant 2002721).License
Related items
Showing items with similar title or keywords.
-
NHC-Stabilized Au10 Nanoclusters and Their Conversion to Au25 Nanoclusters
Lummis, Paul A.; Osten, Kimberly M.; Levchenko, Tetyana I.; Sabooni Asre Hazer, Maryam; Malola, Sami; Owens-Baird, Bryan; Veinot, Alex J.; Albright, Emily L.; Schatte, Gabriele; Takano, Shinjiro; Kovnir, Kirill; Stamplecoskie, Kevin G.; Tsukuda, Tatsuya; Häkkinen, Hannu; Nambo, Masakazu; Crudden, Cathleen M. (American Chemical Society (ACS), 2022)Herein, we describe the synthesis of a toroidal Au10 cluster stabilized by N-heterocyclic carbene and halide ligands via reduction of the corresponding NHC−Au−X complexes (X = Cl, Br, I). The significant effect of the ... -
Photodynamics studies of ligand-protected gold nanoclusters by using ultrafast transient infrared spectroscopy
Mustalahti, Satu (University of Jyväskylä, 2015)Highly monodisperse samples of three ligand-protected gold nanoclusters Au102(pMBA)44, Au144(SC2H4Ph)60, and a cluster tentatively identified as Au130(pMBA)50, were characterized by UV/vis and infrared spectroscopy, ... -
Chloride Ligands on DNA-Stabilized Silver Nanoclusters
Gonzàlez-Rosell, Anna; Malola, Sami; Guha, Rweetuparna; Arevalos, Nery R.; Matus, María Francisca; Goulet, Meghen E.; Haapaniemi, Esa; Katz, Benjamin B.; Vosch, Tom; Kondo, Jiro; Häkkinen, Hannu; Copp, Stacy M. (American Chemical Society (ACS), 2023)DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead ... -
Thiol-Stabilized Atomically Precise, Superatomic Silver Nanoparticles for Catalyzing Cycloisomerization of Alkynyl Amines
Yan, Juanzhu; Zhang, Jun; Chen, Xumao; Malola, Sami; Zhou, Bo; Selenius, Elli; Zhang, Xiaomin; Yuan, Peng; Deng, Guocheng; Liu, Kunlong; Su, Haifeng; Teo, Boon K.; Häkkinen, Hannu; Zheng, Lansun; Zheng, Nanfeng (Oxford University Press on behalf of China Science Publishing & Media Ltd, 2018)Both the electronic and surface structures of metal nanomaterials play critical roles in determining their chemical properties. However, the non-molecular nature of conventional nanoparticles makes it extremely challenging ... -
Interactions between silver nanoparticles and fluorescent phytochromes from Deinococcus radiodurans
Nuuttila, Lauri (2017)Poikkitieteelliset sovellukset ovat viime aikoina yleistyneet tieteellisessä tutkimuksessa. Tämä näkyy hyvin esimerkiksi elävän kudoksen kuvantamisen kehittymisessä, jota varten etsitään jatkuvasti parempia biologisia ...