Synergistic Bimetallic PdNi Nanoparticles : Enhancing Glycerol Electrooxidation While Preserving C3 Product Selectivity
dc.contributor.author | White, Jai | |
dc.contributor.author | Terekhina, Irina | |
dc.contributor.author | Campos dos Santos, Egon | |
dc.contributor.author | Martín-Yerga, Daniel | |
dc.contributor.author | Pettersson, Lars G. M. | |
dc.contributor.author | Johnsson, Mats | |
dc.contributor.author | Cornell, Ann | |
dc.date.accessioned | 2024-03-14T12:52:15Z | |
dc.date.available | 2024-03-14T12:52:15Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | White, J., Terekhina, I., Campos dos Santos, E., Martín-Yerga, D., Pettersson, L. G. M., Johnsson, M., & Cornell, A. (2024). Synergistic Bimetallic PdNi Nanoparticles : Enhancing Glycerol Electrooxidation While Preserving C3 Product Selectivity. <i>ACS Applied Energy Materials</i>, <i>7</i>(5), 1802-1813. <a href="https://doi.org/10.1021/acsaem.3c02789" target="_blank">https://doi.org/10.1021/acsaem.3c02789</a> | |
dc.identifier.other | CONVID_207524496 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93908 | |
dc.description.abstract | Electrochemical conversion of glycerol offers a promising route to synthesize value-added glycerol oxidation products (GOPs) from an abundant biomass-based resource. While noble metals provide a low overpotential for the glycerol electrooxidation reaction (GEOR) and high selectivity toward three-carbon (C3) GOPs, their efficiency and cost can be improved by incorporating non-noble metals. Here, we introduce an effective strategy to enhance the performance of Pd nanoparticles for the GEOR by alloying them with Ni. The resulting PdNi nanoparticles show a significant increase in both specific activity (by almost 60%) and mass activity (by almost 35%) during the GEOR at 40 °C. Additionally, they exhibit higher resistance to deactivation compared to pure Pd. Analysis of the GOPs reveals that the addition of Ni into Pd does not compromise the selectivity, with glycerate remaining at around 60% of the product fraction and the other major product being lactate at around 30%. Density functional theory calculations confirm the reaction pathways and the basis for the higher activity of PdNi. This study demonstrates a significant increase in the GEOR catalytic performance while maintaining the selectivity for C3 GOPs, using a more cost-effective nanocatalyst. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | ACS Applied Energy Materials | |
dc.rights | CC BY 4.0 | |
dc.subject.other | alkaline | |
dc.subject.other | electrocatalysis | |
dc.subject.other | density functional theory | |
dc.subject.other | HPLC | |
dc.subject.other | value-added products | |
dc.title | Synergistic Bimetallic PdNi Nanoparticles : Enhancing Glycerol Electrooxidation While Preserving C3 Product Selectivity | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202403142422 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1802-1813 | |
dc.relation.issn | 2574-0962 | |
dc.relation.numberinseries | 5 | |
dc.relation.volume | 7 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 355569 | |
dc.subject.yso | elektrokatalyysi | |
dc.subject.yso | alkaliniteetti | |
dc.subject.yso | tiheysfunktionaaliteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38660 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28291 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28852 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acsaem.3c02789 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | The authors would like to acknowledge the Swedish Foundation for Strategic Research for funding this work through grant no. EM160010. The computations were enabled by resources provided by the National Academic Infrastructure for Super-computing in Sweden (NAISS) and the Swedish National Infrastructure for Computing (SNIC) at the PDC and NSC centers partially funded by the Swedish Research Council through grant agreement nos. 2022-06725 and 2018-05973. D. M.-Y. thanks the Research Council of Finland for financial support (ref. 355569). | |
dc.type.okm | A1 |