Self-assembly, crystal structure, computational studies, optical investigation, magnetic and biological properties of novel compounds based on methoxyphenyl piperazinium ligand
Makhlouf, J., El Bakri, Y., Saravanan, K., Valkonen, A., Gomez Garcia, C., & Smirani Sta, W. (2023). Self-assembly, crystal structure, computational studies, optical investigation, magnetic and biological properties of novel compounds based on methoxyphenyl piperazinium ligand. Inorganic Chemistry Communications, 154, Article 110914. https://doi.org/10.1016/j.inoche.2023.110914
Published in
Inorganic Chemistry CommunicationsAuthors
Date
2023Access restrictions
Embargoed until: 2025-08-01Request copy from author
Copyright
© 2023 Elsevier B.V. All rights reserved.
Two novel methoxyphenyl-based piperazine compounds have been investigated. The crystal structures of [C11H18N2O][Co(SCN)4] (1) and [(C11H18N2O)4]Cl8.7H2O (2) have been determined using single crystal X-ray crystallography. However, (1) crystallizes in an orthorhombic system with the non-centrosymmetric space group P 212121 with the following lattice parameters: a=8.4637(2) Å, b=14.5848 (5) Å, c= 17.1847 (5) Å with V =2121.3 (1) Å3 and Z = 4, otherwise (2) crystallizes in monoclinic system with P 21/c space group and the following lattice parameters: a=7.2551 (2) Å, b=9.0523 (4) Å, c= 22.3575 (8) Å, β = 95.998 (3)° with V =1460.30 (9) Å3 and Z = 1 . Different interactions packed the system through N-H…S hydrogen bonds for (1). The organic entities are grouped into dimers for (2) through weak interactions and N-H∙∙∙Cl, N-H∙∙∙O, and O-H∙∙∙Cl. The robustness of the crystals is also enhanced by C–H…π of the piperazine ring.
Infrared spectrums were recorded to reveal the vibrational modes of the compounds, and to highlight the optical behavior, UV–visible analysis has been carried out. Thermal analysis was carried out to highlight the thermal stability of complexes. In addition, the antibacterial assets were investigated against different bacteria. The 13C Nuclear Magnetic Resonance was carried out to highlight the presence of primary reagents in the final product. Intermolecular interaction and stabilization of dimer complexes in the crystal packing are explored using Hirshfeld surface analysis to highlight the role of molecular interaction in the crystal packing. The more detailed quantum computation from crystallographic reported self-assembled dimer complexes occurred for comprehensive structure elucidation and showed good findings. The nature of dimer complexes has been assessed by strong and weak intermolecular interactions which were examined by NCI plots and analyzed by QTAIM calculation. Then, the thermal analysis was used to confirm the crystal thermal stability, Furthermore, biological behavior was performed for the compounds against different antibacterial targets to identify to which target the compounds show the best affinity. and finally, the magnetic properties were studied to show the spin coupling for the metal complex. Magnetic measurements of the novel cobalt compound show χT values that are typical for Co(II) cations with S = 3/2.
...
Publisher
Elsevier BVISSN Search the Publication Forum
1387-7003Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/183618101
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Single crystal investigations, Hirshfeld surface analysis, DFT studies, molecular docking, physicochemical characterization, antiferromagnetic behavior, and biological activity of Bis(Homopiperazinium)-Nickel Diaquatetrakis(Isothiocyanato)-Nickel
Makhlouf, Jawher; Louis, Hitler; Isang, Bartholomew B.; El Bakri, Youness; Okoro, Bernard; Valkonen, Arto; Abuelizz, Hatem A.; Al-Salahi, Rashad; Smirani Sta, Wajda (Elsevier, 2024)The purpose of the study is to synthesize and analyze the coordination compound [Ni(C5H12N2)2][Ni(NCS)4 2H2O]. The molecular structure of the Ni compound was established from single-crystal X-ray structure determination. ... -
Growth, single crystal investigations, Hirshfeld surface analysis, DFT studies, molecular dynamics simulations, molecular docking, physico-chemical characterization and biological activity of novel thiocyanic complex with zinc transition metal precursor
Makhlouf, Jawher; El Bakri, Youness; Valkonen, Arto; Saravanan, Kandasamy; Ahmad, Sajjad; Smirani, Wajda (Elsevier, 2022)The present work undertakes the study of novel thiocyanic complex, which have been obtained due to the interaction of cationic entities with the thiocyanate ligands. In fact, these latter are added to a transition metal ... -
Synthesis, Crystal Structure Analyses, and Antibacterial Evaluation of the Cobalt(II) Complex with Sulfadiazine-Pyrazole Prodrug
Altowyan, Mezna Saleh; Haukka, Matti; Ayoup, Mohammed Salah; Ismail, Magda M. F.; El Menofy, Nagwan G.; Soliman, Saied M.; Barakat, Assem; Sharaf, Mona M.; Abu-Youssef, Morsy A. M.; Yousri, Amal (MDPI, 2023)The complex [Co(L)(H2O)4](NO3)2 of (E)-4-(2-(3-methyl-5-oxo-1-(pyridin-2-yl)-1H-pyrazol-4(5H)-ylidene)hydrazinyl)-N-(pyrimidin-2-yl)benzenesulfonamide (L) was synthesized via the self-assembly technique. Its molecular and ... -
Self-assembly, virtual screening of a new cobalt complex : Synthesis, empirical, DFT calculations, biological activity investigations and identification of inhibitory activity on the main protease of COVID-19 and SARS-CoV2 by molecular docking strategy of (C6H6NF)2[Co(SCN)2]
Makhlouf, Jawher; El Bakri, Youness; Valkonen, Arto; Saravanan, Kandasamy; Ahmad, Sajjad; Al-Salahi, Rashad; Smirani, Wajda (Elsevier, 2024)The present work undertakes the study of a new thiocyanic complex (C6H6NF)2[Co(SCN)2], a synergy between the two experimental and theoretical approach allows us to characterize and evaluate our crystal. (C6H6NF)2[Co(SCN)2] ... -
Synthesis, X-ray Crystal Structure and Antimicrobial Activity of Unexpected Trinuclear Cu(II) Complex from s-Triazine-Based Di-Compartmental Ligand via Self-Assembly
Soliman, M. Saied; Lasri, Jamal; Haukka, Matti; Sholkamy, N. Essam; Al-Rasheed, H. Hessa; El-Faham, Ayman (MDPI, 2019)The synthesis and X-ray crystal structure of the trinuclear [Cu3(HL)(Cl)2(NO3)(H2O)5](NO3)2 complex of the s-triazine-based di-compartmental ligand, 2-methoxy-4,6-bis(2-(pyridin-2-ylmsethylene)hydrazinyl)-1,3,5-triazine ...