Näytä suppeat kuvailutiedot

dc.contributor.authorChen, Zhonghua
dc.contributor.authorWang, Hongkai
dc.contributor.authorCong, Fengyu
dc.contributor.authorKettunen, Lauri
dc.date.accessioned2024-02-15T09:34:17Z
dc.date.available2024-02-15T09:34:17Z
dc.date.issued2022
dc.identifier.citationChen, Z., Wang, H., Cong, F., & Kettunen, L. (2022). Construction of Multi-resolution Multi-organ Shape Model Based on Stacked Autoencoder Neural Network. In <i>ICACI 2022 : 14th International Conference on Advanced Computational Intelligence</i> (pp. 62-67). IEEE. <a href="https://doi.org/10.1109/ICACI55529.2022.9837706" target="_blank">https://doi.org/10.1109/ICACI55529.2022.9837706</a>
dc.identifier.otherCONVID_156471608
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93416
dc.description.abstractThe construction of statistical shape models (SSMs) is an important method in the field of medical image segmentation. Most SSMs are constructed by using traditional modeling methods based on principal component analysis (PCA), which cannot fully present the true deformation ability of models. To solve the insufficient deformation ability of SSMs, we propose a stacked autoencoder (SAE) neural network to construct a multi-resolution multi-organ shape model based on mouse micro-CT images, which can express more linear and non-linear deformations than SSMs based on PCA. The main advantage of this method is that the SAE neural network is simple and flexible and it can learn more deformation modes from training data. We have quantitatively compared the modeling performance of this method with the constructed SSMs based on PCA in terms of model generalization and specificity.en
dc.format.extent400
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofICACI 2022 : 14th International Conference on Advanced Computational Intelligence
dc.rightsIn Copyright
dc.titleConstruction of Multi-resolution Multi-organ Shape Model Based on Stacked Autoencoder Neural Network
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202402151894
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-1-6654-7046-9
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange62-67
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 IEEE
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceInternational Conference on Advanced Computational Intelligence
dc.subject.ysotietokonetomografia
dc.subject.yso3D-mallinnus
dc.subject.ysosisäelimet
dc.subject.ysokuvantaminen
dc.subject.ysoneuroverkot
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p20535
jyx.subject.urihttp://www.yso.fi/onto/yso/p26739
jyx.subject.urihttp://www.yso.fi/onto/yso/p12475
jyx.subject.urihttp://www.yso.fi/onto/yso/p3532
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1109/ICACI55529.2022.9837706
jyx.fundinginformationNational Natural Science Fund of China (No. 81971693, 81401475), Science and Technology Innovation Fund of Dalian City (2018J12GX042), Fundamental Research Funds for the Central Universities (DUT19JC01). China Scholarship Council (No. 201806060163)
dc.type.okmA4


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright