Show simple item record

dc.contributor.authorMisitano, Giovanni
dc.date.accessioned2024-02-14T09:31:47Z
dc.date.available2024-02-14T09:31:47Z
dc.date.issued2024
dc.identifier.citationMisitano, G. (2024). Exploring the Explainable Aspects and Performance of a Learnable Evolutionary Multiobjective Optimization Method. <i>ACM Transactions on Evolutionary Learning and Optimization</i>, <i>4</i>(1), 1-39. <a href="https://doi.org/10.1145/3626104" target="_blank">https://doi.org/10.1145/3626104</a>
dc.identifier.otherCONVID_189044689
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/93374
dc.description.abstractMultiobjective optimization problems have multiple conflicting objective functions to be optimized simultaneously. The solutions to these problems are known as Pareto optimal solutions, which are mathematically incomparable. Thus, a decision maker must be employed to provide preferences to find the most preferred solution. However, decision makers often lack support in providing preferences and insights in exploring the solutions available. We explore the combination of learnable evolutionary models with interactive indicator-based evolutionary multiobjective optimization to create a learnable evolutionary multiobjective optimization method. Furthermore, we leverage interpretable machine learning to provide decision makers with potential insights about the problem being solved in the form of rule-based explanations. In fact, we show that a learnable evolutionary multiobjective optimization method can offer advantages in the search for solutions to a multiobjective optimization problem. We also provide an open source software framework for other researchers to implement and explore our ideas in their own works. Our work is a step towards establishing a new paradigm in the field on multiobjective optimization: explainable and learnable multiobjective optimization. We take the first steps towards this new research direction and provide other researchers and practitioners with necessary tools and ideas to further contribute to this field.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.ispartofseriesACM Transactions on Evolutionary Learning and Optimization
dc.rightsCC BY-SA 4.0
dc.subject.othermultiobjective optimization
dc.subject.otherevolutionary multiobjective optimization
dc.subject.otherlearnable evolutionary models
dc.subject.otherexplainable artificial intelligence
dc.titleExploring the Explainable Aspects and Performance of a Learnable Evolutionary Multiobjective Optimization Method
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202402141854
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1-39
dc.relation.issn2688-299X
dc.relation.numberinseries1
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysomallintaminen
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysosovelluskehykset
dc.subject.ysokoneoppiminen
dc.subject.ysotekoäly
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p25000
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
dc.rights.urlhttps://creativecommons.org/licenses/by-sa/4.0/
dc.relation.doi10.1145/3626104
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-SA 4.0
Except where otherwise noted, this item's license is described as CC BY-SA 4.0